Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Acta Trop ; 256: 107269, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38821147

ABSTRACT

Mosquitoes serve as vectors for various diseases like malaria, dengue fever, yellow fever, and lymphatic filarial diseases causing significant global health problems, highlighting the importance of vector control. The study was conducted to assess the effectiveness of nanoformulated clothianidin and chlorfenapyr insecticides treated with ATSB in controlling three mosquito strains. The development of a natural thiolated polymer-coated ATSB nano formulation involved incorporating nano-carriers to deliver insecticides. Field- collected mosquito strains were subjected to laboratory-based bioassays using 1 % and 1.5 % concentrations of each conventionally used and nanoformulated insecticide with ATSB solution. Adult mosquitoes were left overnight to contact with N-ATSB and efficacy was recorded after 36 and 72 h. The results showed that nanoformulated chlorfenapyr was significantly more effective as compared to clothianidin against An. funestus and Cx. quinquefasciatus but the results were not significantly different against An. coluzzii (100 %). An. coluzzii was found to be the most susceptible strain followed by An. funestus and showed 100 % and ∼ 98 % mortality against nanoformulated chlorfenapyr (1.5 %). Nanoformulated clothianidin induced more than 92 % and ∼ 100 % mortality against An. funestus and An. coluzzii respectively. However, Cx. quinquefasciatus significantly showed less mortality against nanoformulated clothianidin (88 %) and chlorfenapyr (>95 %) as compared to Anopheline strains. Furthermore, results indicate that nanoformulated insecticides significantly caused greater and prolonged fatality as compared to conventional form, suggesting effective and suitable strategies for vector management.


Subject(s)
Anopheles , Culex , Guanidines , Insecticides , Mosquito Control , Neonicotinoids , Pyrethrins , Thiazoles , Animals , Guanidines/chemistry , Guanidines/pharmacology , Insecticides/pharmacology , Culex/drug effects , Neonicotinoids/pharmacology , Anopheles/drug effects , Mosquito Control/methods , Pyrethrins/pharmacology , Female , Survival Analysis , Biological Assay
2.
PLoS One ; 19(5): e0304036, 2024.
Article in English | MEDLINE | ID: mdl-38805513

ABSTRACT

BACKGROUND: Attempts to subtype, type 2 diabetes (T2D) have mostly focused on newly diagnosed European patients. In this study, our aim was to subtype T2D in a non-white Emirati ethnic population with long-standing disease, using unsupervised soft clustering, based on etiological determinants. METHODS: The Auto Cluster model in the IBM SPSS Modeler was used to cluster data from 348 Emirati patients with long-standing T2D. Five predictor variables (fasting blood glucose (FBG), fasting serum insulin (FSI), body mass index (BMI), hemoglobin A1c (HbA1c) and age at diagnosis) were used to determine the appropriate number of clusters and their clinical characteristics. Multinomial logistic regression was used to validate clustering results. RESULTS: Five clusters were identified; the first four matched Ahlqvist et al subgroups: severe insulin-resistant diabetes (SIRD), severe insulin-deficient diabetes (SIDD), mild age-related diabetes (MARD), mild obesity-related diabetes (MOD), and a fifth new subtype of mild early onset diabetes (MEOD). The Modeler algorithm allows for soft assignments, in which a data point can be assigned to multiple clusters with different probabilities. There were 151 patients (43%) with membership in cluster peaks with no overlap. The remaining 197 patients (57%) showed extensive overlap between clusters at the base of distributions. CONCLUSIONS: Despite the complex picture of long-standing T2D with comorbidities and complications, our study demonstrates the feasibility of identifying subtypes and their underlying causes. While clustering provides valuable insights into the architecture of T2D subtypes, its application to individual patient management would remain limited due to overlapping characteristics. Therefore, integrating simplified, personalized metabolic profiles with clustering holds greater promise for guiding clinical decisions than subtyping alone.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/blood , Male , Female , Middle Aged , Blood Glucose/analysis , Glycated Hemoglobin/analysis , Body Mass Index , Cluster Analysis , Adult , Aged , Insulin/blood , Insulin Resistance , United Arab Emirates/epidemiology
3.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38675373

ABSTRACT

Benzimidazole-based pyrrole/piperidine analogs (1-26) were synthesized and then screened for their acetylcholinesterase and butyrylcholinesterase activities. All the analogs showed good to moderate cholinesterase activities. Synthesized compounds (1-13) were screened in cholinesterase enzyme inhibition assays and showed AChE activities in the range of IC50 = 19.44 ± 0.60 µM to 36.05 ± 0.4 µM against allanzanthane (IC50 = 16.11 ± 0.33 µM) and galantamine (IC50 = 19.34 ± 0.62 µM) and varied BuChE inhibitory activities, with IC50 values in the range of 21.57 ± 0.61 µM to 39.55 ± 0.03 µM as compared with standard allanzanthane (IC50 = 18.14 ± 0.05 µM) and galantamine (IC50 = 21.45 ± 0.21 µM). Similarly, synthesized compounds (14-26) were also subjected to tests to determine their in vitro AChE inhibitory activities, and the results obtained corroborated that all the compounds showed varied activities in the range of IC50 = 22.07 ± 0.13 to 42.01 ± 0.02 µM as compared to allanzanthane (IC50 = 20.01 ± 0.12 µM) and galantamine (IC50 = 18.05 ± 0.31 µM) and varied BuChE inhibitory activities, with IC50 values in the range of 26.32 ± 0.13 to 47.03 ± 0.15 µM as compared to standard allanzanthane (IC50 = 18.14 ± 0.05 µM) and galantamine (IC50 = 21.45 ± 0.21 µM). Binding interactions of the most potent analogs were confirmed through molecular docking studies. The active analogs 2, 4, 10 and 13 established numerous interactions with the active sites of targeted enzymes, with docking scores of -10.50, -9.3, -7.73 and -7.8 for AChE and -8.97, -8.2, -8.20 and -7.6 for BuChE, respectively.

4.
Discov Nano ; 19(1): 67, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619645

ABSTRACT

Titanium dioxide (TiO2) nanoparticles have gained significant attention due to their wide-ranging applications. This research explores an approach to functionalize Niobium Nitrogen Titanium Dioxide nanoparticles (Nb-N-TiO2 NPs) with Mentha arvensis ethanolic leaf extracts. This functionalization allows doped NPs to interact with the bioactive compounds in extracts, synergizing their antioxidant activity. While previous studies have investigated the antioxidant properties of TiO2 NPs synthesized using ethanolic extracts of Mentha arvensis, limited research has focused on evaluating the antioxidant potential of doped nanoparticles functionalized with plant extracts. The characterization analyses are employed by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Ultraviolet-visible (UV-Vis) spectroscopy to evaluate these functionalized doped nanoparticles thoroughly. Subsequently, the antioxidant capabilities through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP) assays have been assessed. Within functionalized Nb-N-TiO2, the FTIR has a distinctive peak at 2350, 2010, 1312, 1212, and 1010 cm-1 with decreased transmittance associated with vibrations linked to the Nb-N bond. SEM revealed a triangular aggregation pattern, 500 nm to 2 µm of functionalized Nb-N-TiO2 NPs. Functionalized doped Nb-N-TiO2 NPs at 500 µg mL-1 exhibited particularly robust antioxidant activity, achieving an impressive 79% efficacy at DPPH assessment; meanwhile, ferric reduction efficiency of functionalized doped Nb-N-TiO2 showed maximum 72.16%. In conclusion, doped Nb-N-TiO2 NPs exhibit significantly enhanced antioxidant properties when functionalized with Mentha arvensis ethanolic extract compared to pure Nb-N-TiO2 manifested that doped Nb-N-TiO2 have broad promising endeavors for various biomedicine applications.

5.
Diabetes Res Clin Pract ; 207: 111045, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38070546

ABSTRACT

AIMS: To describe the effect of three classes of GLP1 analogues on HbA1c and weight over one year in a homogenous group of patients at the Dubai Diabetes Center in Dubai, United Arab Emirates. The specific objectives are to study the extent of change in HbA1c and weight loss on these medications as well as the sustainability of change over one year. METHODS: A retrospective audit of patients diagnosed Type 2 diabetes receiving one of the three following GLP-1 agonists (Exenatide LA 2 mg weekly, liraglutide 1.8 mg once daily, Dulaglutide 1.5 mg) over one year and documenting changes in HbA1c and weight at 3-, 6-, 9-, and 12-months intervals. RESULTS: The study shows that while there was significant reduction in HbA1c and weight in the first 3 months, this change was not clinically significant. Also, the change was not maintained at the end of the year. By the final quarter, the effect of the medication diminishes, accompanied by a partial regain of weight. CONCLUSION: GLP1 agonists favorable initial effect on HbA1c and weight may not be sustainable beyond a certain period. The exact reason and factors contributing to this need further exploration.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/drug therapy , Exenatide/pharmacology , Exenatide/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/antagonists & inhibitors , Glucagon-Like Peptide-1 Receptor/metabolism , Glycated Hemoglobin , Glycemic Control , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Liraglutide/pharmacology , Liraglutide/therapeutic use , Retrospective Studies , United Arab Emirates/epidemiology , Weight Loss
6.
Gastro Hep Adv ; 2(4): 608-620, 2023.
Article in English | MEDLINE | ID: mdl-38009162

ABSTRACT

BACKGROUND AND AIMS: Gastroesophageal reflux disease (GERD) is a prevalent gastrointestinal disorder that may complicate conditions such as obstructive airway disease. Our group has identified predictive biomarkers of GERD in particulate exposed first responders with obstructive airway disease. In addition, GERD diagnosis and treatment is costly and invasive. In light of these clinical concerns, we aimed to systematically review studies identifying noninvasive, multiOmic, and multicompartmental biomarkers of GERD. METHODS: A systematic review of PubMed and Embase was performed using keywords focusing on reflux disease and biomarkers and registered with PROSPERO. We included original human studies in English, articles focusing on noninvasive biomarkers of GERD published after December 31, 2009. GERD subtypes (non-erosive reflux disease and erosive esophagitis) and related conditions (Barrett's Esophagus [BE] and Esophageal Adenocarcinoma). Predictive measures were synthesized and risk of bias assessed (Newcastle-Ottawa Scale). RESULTS: Initial search identified n = 238 studies andn 13 articles remained after applying inclusion/exclusion criteria. Salivary pepsin was the most studied biomarker with significant sensitivity and specificity for GERD. Serum assessment showed elevated levels of Tumor Necrosis Factor-alpha in both GERD and Barrett's. Exhaled breath volatile sulfur compounds and acetic acid were associated with GERD. Oral Microbiome: Models with Lautropia, Streptococcus, and Bacteroidetes showed the greatest discrimination between BE and controls vs Lautropia; ROCAUC 0.94 (95% confidence interval; 0.85-1.00). CONCLUSION: Prior studies identified significant multiOmic, multicompartmental noninvasive biomarker risks for GERD and BE. However, studies have a high risk of bias and the reliability and accuracy of the biomarkers identified are greatly limited, which further highlights the need to discover and validate clinically relevant noninvasive biomarkers of GERD.

7.
Cureus ; 15(10): e47620, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38022234

ABSTRACT

T-wave inversions on electrocardiograms (ECGs) can present a diagnostic challenge due to their association with various underlying causes. One less-explored cause is memory T-waves, a phenomenon characterized by T-wave inversions, often seen in chest and inferior leads, following a period of abnormal ventricular conduction. In this case report, we discuss the intriguing case of an 80-year-old woman who recently underwent percutaneous coronary intervention (PCI) for a myocardial infarction and subsequently developed memory T-waves. We are also discussing how important it can be to understand and recognize memory T-waves, as it will avoid further unnecessary tests and longer hospital stays.

9.
ACS Omega ; 8(35): 31632-31647, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37692213

ABSTRACT

The recent global wave of organic food consumption and the vitality of nutraceuticals for human health benefits has driven the need for applying scientific methods for phytochemical testing. Advanced in vitro models with greater physiological relevance than conventional in vitro models are required to evaluate the potential benefits and toxicity of nutraceuticals. Organ-on-chip (OOC) models have emerged as a promising alternative to traditional in vitro models and animal testing due to their ability to mimic organ pathophysiology. Numerous studies have demonstrated the effectiveness of OOC models in identifying pharmaceutically relevant compounds and accurately assessing compound-induced toxicity. This review examines the utility of traditional in vitro nutraceutical testing models and discusses the potential of OOC technology as a preclinical testing tool to examine the biomedical potential of nutraceuticals by reducing the need for animal testing. Exploring the capabilities of OOC models in carrying out plant-based bioactive compounds can significantly contribute to the authentication of nutraceuticals and drug discovery and validate phytochemicals medicinal characteristics. Overall, OOC models can facilitate a more systematic and efficient assessment of nutraceutical compounds while overcoming the limitations of current traditional in vitro models.

10.
World J Diabetes ; 14(8): 1259-1270, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37664471

ABSTRACT

BACKGROUND: Globally, patients with diabetes suffer from increased disease severity and mortality due to coronavirus disease 2019 (COVID-19). Old age, high body mass index (BMI), comorbidities, and complications of diabetes are recognized as major risk factors for infection severity and mortality. AIM: To investigate the risk and predictors of higher severity and mortality among in-hospital patients with COVID-19 and type 2 diabetes (T2D) during the first wave of the pandemic in Dubai (March-September 2020). METHODS: In this cross-sectional nested case-control study, a total of 1083 patients with COVID-19 were recruited. This study included 890 men and 193 women. Of these, 427 had T2D and 656 were non-diabetic. The clinical, radiographic, and laboratory data of the patients with and without T2D were compared. Independent predictors of mortality in COVID-19 non-survivors were identified in patients with and without T2D. RESULTS: T2D patients with COVID-19 were older and had higher BMI than those without T2D. They had higher rates of comorbidities such as hypertension, ischemic heart disease, heart failure, and more life-threatening complications. All laboratory parameters of disease severity were significantly higher than in those without T2D. Therefore, these patients had a longer hospital stay and a significantly higher mortality rate. They died from COVID-19 at a rate three times higher than patients without. Most laboratory and radiographic severity indices in non-survivors were high in patients with and without T2D. In the univariate analysis of the predictors of mortality among all COVID-19 non-survivors, significant associations were identified with old age, increased white blood cell count, lym-phopenia, and elevated serum troponin levels. In multivariate analysis, only lymphopenia was identified as an independent predictor of mortality among T2D non-survivors. CONCLUSION: Patients with COVID-19 and T2D were older with higher BMI, more comorbidities, higher disease severity indices, more severe proinflammatory state with cardiac involvement, and died from COVID-19 at three times the rate of patients without T2D. The identified mortality predictors will help healthcare workers prioritize the management of patients with COVID-19.

11.
Life (Basel) ; 13(8)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37629640

ABSTRACT

Focused ultrasound (FUS) has emerged as a promising noninvasive therapeutic modality for treating atherosclerotic arterial disease. High-intensity focused ultrasound (HIFU), a noninvasive and precise modality that generates high temperatures at specific target sites within tissues, has shown promising results in reducing plaque burden and improving vascular function. While low-intensity focused ultrasound (LIFU) operates at lower energy levels, promoting mild hyperthermia and stimulating tissue repair processes. This review article provides an overview of the current state of HIFU and LIFU in treating atherosclerosis. It focuses primarily on the therapeutic potential of HIFU due to its higher penetration and ability to achieve atheroma disruption. The review summarizes findings from animal models and human trials, covering the effects of FUS on arterial plaque and arterial wall thrombolysis in carotid, coronary and peripheral arteries. This review also highlights the potential benefits of focused ultrasound, including its noninvasiveness, precise targeting, and real-time monitoring capabilities, making it an attractive approach for the treatment of atherosclerosis and emphasizes the need for further investigations to optimize FUS parameters and advance its clinical application in managing atherosclerotic arterial disease.

12.
Life (Basel) ; 13(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36836898

ABSTRACT

BACKGROUND: Particulate matter (PM) exposure is responsible for seven million deaths annually and has been implicated in the pathogenesis of respiratory infections such as severe acute respiratory syndrome (SARS). Understanding modifiable risk factors of high mortality, resource burdensome C19 and exposure risks such as PM is key to mitigating their devastating effects. This systematic review focuses on the literature available, identifying the spatial and temporal variation in the role of quantified PM exposure in SARS disease outcome and planning our future experimental studies. METHODS: The systematic review utilized keywords adhered to the PRISMA guidelines. We included original human research studies in English. RESULTS: Initial search yielded N = 906, application of eligibility criteria yielded N = 46. Upon analysis of risk of bias N = 41 demonstrated high risk. Studies found a positive association between elevated PM2.5, PM10 and SARS-related outcomes. A geographic and temporal variation in both PM and C19's role was observed. CONCLUSION: C19 is a high mortality and resource intensive disease which devastated the globe. PM exposure is also a global health crisis. Our systematic review focuses on the intersection of this impactful disease-exposure dyad and understanding the role of PM is important in the development of interventions to prevent future spread of viral infections.

13.
Front Plant Sci ; 13: 965878, 2022.
Article in English | MEDLINE | ID: mdl-36212378

ABSTRACT

High-throughput sequencing technologies (HSTs) have revolutionized crop breeding. The advent of these technologies has enabled the identification of beneficial quantitative trait loci (QTL), genes, and alleles for crop improvement. Climate change have made a significant effect on the global maize yield. To date, the well-known omic approaches such as genomics, transcriptomics, proteomics, and metabolomics are being incorporated in maize breeding studies. These approaches have identified novel biological markers that are being utilized for maize improvement against various abiotic stresses. This review discusses the current information on the morpho-physiological and molecular mechanism of abiotic stress tolerance in maize. The utilization of omics approaches to improve abiotic stress tolerance in maize is highlighted. As compared to single approach, the integration of multi-omics offers a great potential in addressing the challenges of abiotic stresses of maize productivity.

14.
Appetite ; 179: 106314, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36154943

ABSTRACT

Cultured meat, also known as 'in-vitro meat' or 'clean meat', holds the potential solution to environmental sustainability along with conventional meat alternatives, including plant-based meat, insects, algae, and pulses. A critical step to its widescale acceptance is consumer perception. Both qualitative research and quantitative analysis are being carried out to enhance the acceptability of cultured meat. In this review, consumer behavior towards cultured meat is accessed to understand the current market scenario. Psychological factors that can hinder or improve cultured meat acceptance are discussed. Consumer social factors geared towards consumer behavior on cultured meat are also summarized. As per the research findings, meat lovers are more likely to try cultured meat owing to the attached sustainability claims. The consumers' concerns about the unnaturalness of cultured meat should be addressed in order to encourage them to get more acquainted with the product and modify their attitudes about it. Marketing tactics of labeling it as 'clean meat' rendered better purchasing as compared to other terms. Furthermore, educating the masses likely reduced the unfamiliarity with newly marketed products resulting in improved consumer perception of cultured meat.


Subject(s)
Consumer Behavior , Food Preferences , Attitude , Food Preferences/psychology , Humans , Marketing , Meat
15.
Int J Clin Pract ; 2022: 6286574, 2022.
Article in English | MEDLINE | ID: mdl-35685530

ABSTRACT

Background: Telemonitoring (TM), mobile-phone technology for health, and bluetooth-enabled self-monitoring devices represent innovative solutions for proper glycemic control, compliance and monitoring, and access to providers. Objective: In this study, we evaluated the impact of TM devices on glycemic control and the compliance of 38 previously lost-to-follow-up (LTFU) patients with type 2 diabetes mellitus (T2DM). Methods: This was an interventional single-center study that randomly recruited LTFU patients from the Dubai Diabetes Center (DDC), UAE. After contact and recruitment by phone, patients had an initial visit at which they were provided with home-based TM devices. A follow-up visit was conducted three months later. Results: The mean HbA1c decreased significantly from 10.3 ± 1.9% at baseline to 7.4 ± 1.5% at the end of follow-up, with a mean difference (MD) of -2.9% [95% CI: -3.6 to -2.2]. The percentage of patients with HbA1c <7% was 50% after three months. Home-based blood sugar monitor devices showed a significant reduction in fasting blood glucose (FBG) after three months (MD = -40.1 mg/dL, 95% CI: -70.8 to -9.3). A significant reduction was observed in terms of body weight after three months (MD = -1.3 kg, 95% CI: -2.5 to -0.08). The mean number of days the participants used a device was the highest for portable pill dispensers (86.5 ± 22.8 days), followed by a OneTouch® blood glucose monitor (72.9 ± 23.5 days). Conclusions: TM led to significant improvements in overall diabetes outcomes, including glycemic control and body weight, indicating its effectiveness in a challenging population of T2DM patients who had previously been lost to follow-up.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Blood Glucose/metabolism , Body Weight , Diabetes Mellitus, Type 2/therapy , Follow-Up Studies , Glycated Hemoglobin/analysis , Humans , United Arab Emirates
16.
Saudi J Biol Sci ; 29(8): 103337, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35770270

ABSTRACT

Clostridium tetani produce tetanospasmin, a potent exotoxin; that causes tetanus or lockjaw disease. Scientists developed an anti-tetanus toxoid to protect the body from the spasm's neurotoxic effect. In Pakistan recently, 478 cases of neonatal tetanus were reported. The study was carried out at The National Control Laboratory for Biologicals Islamabad, aiming to decipher the effectiveness of the most frequently used tetanus toxoid vaccine adsorbed in Pakistan in comparison to standard reference vaccine having earlier known consistent values. The vaccines included domestic public sector, domestic private sector, imported private sector I, and imported private sector II. The triplicate experiments on purebred Swiss albino mice were performed by immunizing with Tetanus toxoid and then tested parallel with standard reference vaccine. Various analytical tests were performed on the test organism that included flocculation test/identity test, antibody quantification using enzyme-linked immunosorbent assay (ELISA), potency test, abnormal toxicity test, osmolality, pH test, liquid sub-visible particle test, and sterility test. Results of all the vaccines were compared in comparison with the standard reference vaccine. Absorbances of test vaccines were recorded at the lowest dilution by ELISA. The domestic private sector, imported private sector I, imported private sector II and standard reference vaccine were flocculated at mean dilution (Mean: 0.24, 95% CI: 0.1903-0.2897), and the domestic public sector was flocculated at mean dilution (Mean: 0.23, 95% CI: 0.2052-0.2548). All the products were found within the normal ranges where it was concluded that the maximum average titer of 2.81 was observed at dilution 10-1.6, indicating that these vaccines were adequate/suitable for the prevention of tetanus.

17.
Neuropsychiatr Dis Treat ; 18: 1259-1268, 2022.
Article in English | MEDLINE | ID: mdl-35761861

ABSTRACT

Background: The acute phase of Coronavirus disease-19 (COVID-19) is well known. However, there is now an increasing number of patients suffering from the post-acute sequelae of COVID-19 (PASC Post COVID-19 condition occurs in individuals with a history of probable or confirmed SARS CoV-2 infection, usually 3 months from the onset of COVID-19 with symptoms and that last for at least 2 months and cannot be explained by an alternative diagnosis), including neuropsychiatric symptoms. The purpose of this report is to describe the sociodemographic, diagnostic and treatment characteristics of patients evaluated in an outpatient psychiatric setting for PASC. Methods: A retrospective review of 30 individuals with documented COVID-19 illness treated at a university hospital-based Post-COVID-19 Recovery Program were referred to an outpatient psychiatric department for consultation and treatment from December 2020 to July 2021. All individuals complained of neuropsychiatric symptoms including anxiety, depression, fatigue and cognitive problems. Data on sociodemographic characteristics, psychiatric diagnosis, prominent psychological themes and treatment prescribed were described and, where applicable, analyzed with SPSS software. Results: The study population consisted of patients between 25 and 82 years old, with a predominance of women between 46 and 60 years. Approximately half of the patient population had a primary diagnosis of major depressive disorder, often combined with prominent anxiety. Over two-thirds of the patient population reported a combination of depression, fatigue and cognitive complaints, predominantly memory and slowed processing speed. Prominent stressors and psychological themes included social and occupational decline, isolation, lack of empathy and understanding from family, friends and employers, and apprehension about future ability to return to their baseline level of function. Treatments recommended included individual and group psychotherapy, medication and cognitive rehabilitation. Modafinil and antidepressants, often in combination, were the most commonly used medications, intended to target the pervasive fatigue, depressive, and anxiety these individuals were facing. Conclusion: Clinical experience from this patient population underscored the significant medical, emotional, neurocognitive and functional sequelae of PASC. Management of these individuals requires a collaborative approach with the availability of psychotherapeutic interventions, pharmacologic treatment, neurocognitive assessment and remediation to address these symptoms.

18.
Front Immunol ; 13: 864007, 2022.
Article in English | MEDLINE | ID: mdl-35572539

ABSTRACT

Sepsis is a potentially life-threatening systemic inflammatory syndrome characterized by dysregulated host immunological responses to infection. Uncontrolled immune cell activation and exponential elevation in circulating cytokines can lead to sepsis, septic shock, multiple organ dysfunction syndrome, and death. Sepsis is associated with high re-hospitalization and recovery may be incomplete, with long term sequelae including post-sepsis syndrome. Consequently, sepsis continues to be a leading cause of morbidity and mortality across the world. In our recent review of human chorionic gonadotropin (hCG), we noted that its major properties including promotion of fertility, parturition, and lactation were described over a century ago. By contrast, the anti-inflammatory properties of this hormone have been recognized only more recently. Vasopressin, a hormone best known for its anti-diuretic effect, also has anti-inflammatory actions. Surprisingly, vasopressin's close cousin, oxytocin, has broader and more potent anti-inflammatory effects than vasopressin and a larger number of pre-clinical studies supporting its potential role in limiting sepsis-associated organ damage. This review explores possible links between oxytocin and related octapeptide hormones and sepsis-related modulation of pro-inflammatory and anti-inflammatory activities.


Subject(s)
Peptide Hormones , Sepsis , Anti-Inflammatory Agents/therapeutic use , Female , Humans , Oxytocin/therapeutic use , Sepsis/complications , Sepsis/drug therapy , Vasopressins
19.
J Food Biochem ; 46(9): e14185, 2022 09.
Article in English | MEDLINE | ID: mdl-35441405

ABSTRACT

Ongoing research in the food industry is striving to replace wheat flour with new alternatives from sustainable sources to overcome the disease burden in the existing population. Celiac disease, wheat allergy, gluten sensitivity, or non-celiac gluten sensitivity are some common disorders associated with gluten present in wheat. These scientific findings are crucial to finding appropriate alternatives in introducing new ingredients supporting the consumer's requirements. Among the alternatives, amaranth, barley, coconut, chestnut, maize, millet, teff, oat, rye, sorghum, soy, rice flour, and legumes could be considered appropriate due to their chemical composition, bioactive profile, and alternatives utilization in the baking industry. Furthermore, the enrichment of these alternatives with proper ingredients is considered effective. Literature demonstrated that the flours from these alternative sources significantly enhanced the physicochemical, pasting, and rheological properties of the doughs. These flours boost a significant reduction in gluten proteins associated with food intolerance, in comparison with wheat highlighting a visible market opportunity with nutritional and organoleptic benefits for food producers. PRACTICAL APPLICATIONS: New alternatives from sustainable sources to wheat in bakery foods as an approach that affects human health. Alternatives from sustainable sources are important source of nutrients and bioactive compounds. Alternatives from sustainable sources are rising due to nutritional and consumer demand in bakery industry. New alternatives from sustainable sources improve physicochemical, pasting, and rheological properties of dough. Non-wheat-based foods from non-traditional grains have a potential to increase consumer market acceptance.


Subject(s)
Bread , Flour , Bread/analysis , Edible Grain , Flour/analysis , Glutens/chemistry , Technology , Triticum
20.
Life (Basel) ; 12(2)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35207423

ABSTRACT

BACKGROUND: Plants have been considered a vital source of modern pharmaceutics since the paleolithic age. Contemporary chemotherapeutic drugs for cancer therapy are chemical entities sourced from plants. However, synthetic drugs or their derivatives come with severe to moderate side effects for human health. Hence, the quest to explore and discover plant-based novel anticancer drugs is ongoing. Anticancer activities are the primary method to estimate the potential and efficacy of an extract or compound for drug discovery. However, traditional in vitro anticancer activity assays often show poor efficacy due to the lack of in-vivo-like cellular environment. In comparison, the animal-based in vivo assays lack human genetic makeup and have ethical concerns. AIM: This study aimed to overcome the limitations of traditional cell-culture-based anticancer assays and find the most suitable assay for anticancer activity of plant extracts. We first reported utilizing a liver tumor microphysiological system in the anticancer effect assessment of plant extracts. METHODOLOGY: Methanolic extracts of Acer cappadocicum Gled were used to assess anticancer activity against liver tumor microphysiological system (MPS), and cell viability, liver function tests, and antioxidant enzyme activities were performed. Additionally, an embedded transepithelial electrical resistance sensor was utilized for the real-time monitoring of the liver tumor MPS. The results were also compared with the traditional cell culture model. RESULTS: The study demonstrated the superiority of the TEER sensor-based liver tumor MPS by its better anticancer activity based on cell viability and biomarker analysis compared to the traditional in vitro cell culture model. The anticancer effects of the plant extracts were successfully observed in real time, and methanolic extracts of Acer cappadocicum Gled increased the alanine transaminase and aspartate aminotransferase secretion, which may reveal the different mechanisms of these extracts and suggest a clue for the future molecular study of the anticancer pathways. CONCLUSION: Our results show that the liver tumor microphysiological system could be a better platform for plant-based anticancer activity assessment than traditional cell culture models.

SELECTION OF CITATIONS
SEARCH DETAIL
...