Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Discov Nano ; 19(1): 67, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619645

ABSTRACT

Titanium dioxide (TiO2) nanoparticles have gained significant attention due to their wide-ranging applications. This research explores an approach to functionalize Niobium Nitrogen Titanium Dioxide nanoparticles (Nb-N-TiO2 NPs) with Mentha arvensis ethanolic leaf extracts. This functionalization allows doped NPs to interact with the bioactive compounds in extracts, synergizing their antioxidant activity. While previous studies have investigated the antioxidant properties of TiO2 NPs synthesized using ethanolic extracts of Mentha arvensis, limited research has focused on evaluating the antioxidant potential of doped nanoparticles functionalized with plant extracts. The characterization analyses are employed by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Ultraviolet-visible (UV-Vis) spectroscopy to evaluate these functionalized doped nanoparticles thoroughly. Subsequently, the antioxidant capabilities through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP) assays have been assessed. Within functionalized Nb-N-TiO2, the FTIR has a distinctive peak at 2350, 2010, 1312, 1212, and 1010 cm-1 with decreased transmittance associated with vibrations linked to the Nb-N bond. SEM revealed a triangular aggregation pattern, 500 nm to 2 µm of functionalized Nb-N-TiO2 NPs. Functionalized doped Nb-N-TiO2 NPs at 500 µg mL-1 exhibited particularly robust antioxidant activity, achieving an impressive 79% efficacy at DPPH assessment; meanwhile, ferric reduction efficiency of functionalized doped Nb-N-TiO2 showed maximum 72.16%. In conclusion, doped Nb-N-TiO2 NPs exhibit significantly enhanced antioxidant properties when functionalized with Mentha arvensis ethanolic extract compared to pure Nb-N-TiO2 manifested that doped Nb-N-TiO2 have broad promising endeavors for various biomedicine applications.

2.
ACS Omega ; 8(35): 31632-31647, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37692213

ABSTRACT

The recent global wave of organic food consumption and the vitality of nutraceuticals for human health benefits has driven the need for applying scientific methods for phytochemical testing. Advanced in vitro models with greater physiological relevance than conventional in vitro models are required to evaluate the potential benefits and toxicity of nutraceuticals. Organ-on-chip (OOC) models have emerged as a promising alternative to traditional in vitro models and animal testing due to their ability to mimic organ pathophysiology. Numerous studies have demonstrated the effectiveness of OOC models in identifying pharmaceutically relevant compounds and accurately assessing compound-induced toxicity. This review examines the utility of traditional in vitro nutraceutical testing models and discusses the potential of OOC technology as a preclinical testing tool to examine the biomedical potential of nutraceuticals by reducing the need for animal testing. Exploring the capabilities of OOC models in carrying out plant-based bioactive compounds can significantly contribute to the authentication of nutraceuticals and drug discovery and validate phytochemicals medicinal characteristics. Overall, OOC models can facilitate a more systematic and efficient assessment of nutraceutical compounds while overcoming the limitations of current traditional in vitro models.

3.
Life (Basel) ; 13(8)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37629640

ABSTRACT

Focused ultrasound (FUS) has emerged as a promising noninvasive therapeutic modality for treating atherosclerotic arterial disease. High-intensity focused ultrasound (HIFU), a noninvasive and precise modality that generates high temperatures at specific target sites within tissues, has shown promising results in reducing plaque burden and improving vascular function. While low-intensity focused ultrasound (LIFU) operates at lower energy levels, promoting mild hyperthermia and stimulating tissue repair processes. This review article provides an overview of the current state of HIFU and LIFU in treating atherosclerosis. It focuses primarily on the therapeutic potential of HIFU due to its higher penetration and ability to achieve atheroma disruption. The review summarizes findings from animal models and human trials, covering the effects of FUS on arterial plaque and arterial wall thrombolysis in carotid, coronary and peripheral arteries. This review also highlights the potential benefits of focused ultrasound, including its noninvasiveness, precise targeting, and real-time monitoring capabilities, making it an attractive approach for the treatment of atherosclerosis and emphasizes the need for further investigations to optimize FUS parameters and advance its clinical application in managing atherosclerotic arterial disease.

4.
Saudi J Biol Sci ; 29(8): 103337, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35770270

ABSTRACT

Clostridium tetani produce tetanospasmin, a potent exotoxin; that causes tetanus or lockjaw disease. Scientists developed an anti-tetanus toxoid to protect the body from the spasm's neurotoxic effect. In Pakistan recently, 478 cases of neonatal tetanus were reported. The study was carried out at The National Control Laboratory for Biologicals Islamabad, aiming to decipher the effectiveness of the most frequently used tetanus toxoid vaccine adsorbed in Pakistan in comparison to standard reference vaccine having earlier known consistent values. The vaccines included domestic public sector, domestic private sector, imported private sector I, and imported private sector II. The triplicate experiments on purebred Swiss albino mice were performed by immunizing with Tetanus toxoid and then tested parallel with standard reference vaccine. Various analytical tests were performed on the test organism that included flocculation test/identity test, antibody quantification using enzyme-linked immunosorbent assay (ELISA), potency test, abnormal toxicity test, osmolality, pH test, liquid sub-visible particle test, and sterility test. Results of all the vaccines were compared in comparison with the standard reference vaccine. Absorbances of test vaccines were recorded at the lowest dilution by ELISA. The domestic private sector, imported private sector I, imported private sector II and standard reference vaccine were flocculated at mean dilution (Mean: 0.24, 95% CI: 0.1903-0.2897), and the domestic public sector was flocculated at mean dilution (Mean: 0.23, 95% CI: 0.2052-0.2548). All the products were found within the normal ranges where it was concluded that the maximum average titer of 2.81 was observed at dilution 10-1.6, indicating that these vaccines were adequate/suitable for the prevention of tetanus.

5.
Life (Basel) ; 12(2)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35207423

ABSTRACT

BACKGROUND: Plants have been considered a vital source of modern pharmaceutics since the paleolithic age. Contemporary chemotherapeutic drugs for cancer therapy are chemical entities sourced from plants. However, synthetic drugs or their derivatives come with severe to moderate side effects for human health. Hence, the quest to explore and discover plant-based novel anticancer drugs is ongoing. Anticancer activities are the primary method to estimate the potential and efficacy of an extract or compound for drug discovery. However, traditional in vitro anticancer activity assays often show poor efficacy due to the lack of in-vivo-like cellular environment. In comparison, the animal-based in vivo assays lack human genetic makeup and have ethical concerns. AIM: This study aimed to overcome the limitations of traditional cell-culture-based anticancer assays and find the most suitable assay for anticancer activity of plant extracts. We first reported utilizing a liver tumor microphysiological system in the anticancer effect assessment of plant extracts. METHODOLOGY: Methanolic extracts of Acer cappadocicum Gled were used to assess anticancer activity against liver tumor microphysiological system (MPS), and cell viability, liver function tests, and antioxidant enzyme activities were performed. Additionally, an embedded transepithelial electrical resistance sensor was utilized for the real-time monitoring of the liver tumor MPS. The results were also compared with the traditional cell culture model. RESULTS: The study demonstrated the superiority of the TEER sensor-based liver tumor MPS by its better anticancer activity based on cell viability and biomarker analysis compared to the traditional in vitro cell culture model. The anticancer effects of the plant extracts were successfully observed in real time, and methanolic extracts of Acer cappadocicum Gled increased the alanine transaminase and aspartate aminotransferase secretion, which may reveal the different mechanisms of these extracts and suggest a clue for the future molecular study of the anticancer pathways. CONCLUSION: Our results show that the liver tumor microphysiological system could be a better platform for plant-based anticancer activity assessment than traditional cell culture models.

6.
Life (Basel) ; 11(7)2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34357028

ABSTRACT

The appearance of novel microbial resistance, diverse cancer ailment and several other morbidities such as appetite loss, hair loss, anemia, cell damage, etc., are among most critical situation that keeps the phytochemical quest on. Thus, this study characterized the antimicrobial, antioxidant, and anticancer potentials of a rarely accessed Acer cappadocicum gled (AC) population thriving in a remote Palas Valley in northern Pakistan. Leaf extracts of the plant were prepared in organic solvents with different polarities through maceration. Extracts were subjected to antimicrobial, antioxidant, and anticancer activities using agar well, DPPH and cell viability assays. A. cappadocicum methanolic extract (ACM) significantly inhibited bacterial growth, followed by n-butanolic extract (ACB) with the second-highest bacterial inhibition. Similar activity was observed against mycelial growth inhibition in plant-fungal pathogen by ACM and ACB. However, human pathogenic fungi did not affect much by extracts. In antioxidant assessment, the chloroform extract (ACC) showed strong scavenging activity and in cytotoxic evaluation, extracts restricted growth proliferation in cancer cells. The inhibitory evidence of extracts, potent scavenging ability, and low cell viability of human-derived cell lines supports the antimicrobial, antioxidant and anticancerous potential of A. cappadocicum. It advances our quest for natural product research.

7.
Plants (Basel) ; 11(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35009052

ABSTRACT

Medicinal plants are known for their diverse use in the traditional medicine of the Himalayan region of Pakistan. The present study is designed to investigate the anticancer and antimicrobial activities of Prunus cornuta and Quercus semicarpifolia. The anticancer activity was performed using cancerous human cell lines (HepG2, Caco-2, A549, MDA-MB-231, and NCI-H1437 carcinoma cells), while the antimicrobial activity was conducted with the agar-well diffusion method. Furthermore, toxicity studies were performed on alveolar and renal primary epithelial cells. Initially, different extracts were prepared by maceration techniques using n-hexane, chloroform, ethyl acetate, butanol, and methanol. The preliminary phytochemical screening showed the presence of secondary metabolites such as alkaloids, tannins, saponins, flavonoids, glycosides, and quinones. The chloroform extract of P. cornuta (PCC) exhibited significant inhibitory activity against Acinetobacter baumannii (16 mm) and Salmonella enterica (14.5 mm). The A. baumannii and S. enterica strains appeared highly susceptible to n-hexane extract of P. cornuta (PCN) with an antibacterial effect of 15 mm and 15.5 mm, respectively. The results also showed that the methanolic extracts of Quercus semecarpifolia (QSM) exhibited considerable antibacterial inhibitory activity in A. baumannii (18 mm), Escherichia coli (15 mm). The QSN and QSE extracts also showed good inhibition in A. baumannii with a 16 mm zone of inhibition. The Rhizopus oryzae strain has shown remarkable mycelial inhibition by PCM and QSN with 16 mm and 21 mm inhibition, respectively. Furthermore, the extracts of P. cornuta and Q. semicarpifolia exhibited prominent growth inhibition of breast (MDA-MB-231) and lung (A549) carcinoma cells with 19-30% and 22-39% cell viabilities, respectively. The gut cell line survival was also significantly inhibited by Q. semicarpifolia (24-34%). The findings of this study provide valuable information for the future development of new antibacterial and anticancer medicinal agents from P. cornuta and Q. semicarpifolia extracts.

SELECTION OF CITATIONS
SEARCH DETAIL
...