Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34103360

ABSTRACT

Neuro-immune interaction during development is strongly implicated in the pathogenesis of neurodevelopmental disorders, but the mechanisms that cause neuronal circuit dysregulation are not well understood. We performed in vivo imaging of the developing retinotectal system in the larval zebrafish to characterize the effects of immune system activation on refinement of an archetypal sensory processing circuit. Acute inflammatory insult induced hyper-dynamic remodeling of developing retinal axons in larval fish and increased axon arbor elaboration over days. Using calcium imaging in GCaMP6s transgenic fish we showed that these morphological changes were accompanied by a shift toward decreased visual acuity in tectal cells. This finding was supported by poorer performance in a visually guided behavioral task. We further found that the pro-inflammatory cytokine, interleukin-1ß (IL-1ß) is upregulated by the inflammatory insult, and that down-regulation of IL-1ß abrogated the effects of inflammation on axonal dynamics and growth. Moreover, baseline branching of the RGC arbors in IL-1ß morphant animals was significantly different from that in control larvae, and their performance in a predation assay was impaired, indicating a role for this cytokine in normal neuronal development. This work establishes a simple and powerful non-mammalian model of developmental immune activation and demonstrates a role for IL-1ß in mediating the pathological effects of inflammation on neuronal circuit development.SIGNIFICANCE STATEMENTMaternal immune activation (MIA) can increase the risk of neurodevelopmental disorders in offspring, however the mechanisms involved are not fully understood. Using a non-mammalian vertebrate model of developmental immune activation, we show that even brief activation of inflammatory pathways has immediate and long-term effects on the arborization of axons, and that these morphological changes have functional and behavioral consequences. Finally, we show that the pro-inflammatory cytokine IL-1ß plays an essential role in both the effects of inflammation on circuit formation and normal axonal development. Our data add to a growing body of evidence supporting epidemiological studies linking immune activation to neurodevelopmental disorders, and help shed light on the molecular and cellular processes that contribute to the etiology of these disorders.

2.
J Neuroendocrinol ; 31(2): e12682, 2019 02.
Article in English | MEDLINE | ID: mdl-30597689

ABSTRACT

Although dehydroepiandrosterone (DHEA) may exert neuroprotective effects in the developing brain, prolonged or excessive elevations in cortisol may exert neurotoxic effects. The ratio between DHEA and cortisol (DC ratio) has been linked to internalising and externalising disorders, as well as cognitive performance, supporting the clinical relevance of this hormonal ratio during development. However, the brain mechanisms by which these effects may be mediated have not yet been identified. Furthermore, although there is evidence that the effects of cortisol in the central nervous system may be sexually dimorphic in humans, the opposite is true for DHEA, with human studies showing no sex-specific associations in cortical thickness, cortico-amygdalar or cortico-hippocampal structural covariance. Therefore, it remains unclear whether sex moderates the developmental associations between DC ratio, brain structure, cognition and behaviour. In the present study, we examined the associations between DC ratio, structural covariance of the hippocampus with whole-brain cortical thickness, and measures of personality, behaviour and cognition in a longitudinal sample of typically developing children, adolescents and young adults aged 6-22 years (N = 225 participants [F = 128]; 355 scans [F = 208]), using mixed effects models that accounted for both within- and between-subject variances. We found sex-specific interactions between DC ratio and anterior cingulate cortex-hippocampal structural covariance, with higher DC ratios being associated with a more negative covariance between these structures in girls, and a more positive covariance in boys. Furthermore, the negative prefrontal-hippocampal structural covariance found in girls was associated with higher verbal memory and mathematical ability, whereas the positive covariance found in boys was associated with lower cooperativeness and reward dependence personality traits. These findings support the notion that the ratio between DHEA and cortisol levels may contribute, at least in part, to the development of sex differences in cognitive abilities, as well as risk for internalising/externalising disorders, via an alteration in prefrontal-hippocampal structure during the transition from childhood to adulthood.


Subject(s)
Dehydroepiandrosterone/metabolism , Hippocampus/anatomy & histology , Hydrocortisone/metabolism , Mental Processes/physiology , Personality/physiology , Prefrontal Cortex/anatomy & histology , Sex Characteristics , Adolescent , Adult , Child , Dehydroepiandrosterone/analysis , Executive Function/physiology , Female , Hippocampus/growth & development , Humans , Hydrocortisone/analysis , Learning/physiology , Male , Memory/physiology , Neuropsychological Tests , Prefrontal Cortex/growth & development , Young Adult
3.
Psychoneuroendocrinology ; 98: 86-94, 2018 12.
Article in English | MEDLINE | ID: mdl-30121549

ABSTRACT

There is accumulating evidence that both dehydroepiandrosterone (DHEA) and cortisol play an important role in regulating physical maturation and brain development. High DHEA levels tend to be associated with neuroprotective and indirect anabolic effects, while high cortisol levels tend to be associated with catabolic and neurotoxic properties. Previous literature has linked the ratio between DHEA and cortisol levels (DC ratio) to disorders of attention, emotional regulation and conduct, but little is known as to the relationship between this ratio and brain development. Due to the extensive links between the amygdala and the cortex as well as the known amygdalar involvement in emotional regulation, we examined associations between DC ratio, structural covariance of the amygdala with whole-brain cortical thickness, and validated report-based measures of attention, working memory, internalizing and externalizing symptoms, in a longitudinal sample of typically developing children and adolescents 6-22 years of age. We found that DC ratio predicted covariance between amygdalar volume and the medial anterior cingulate cortex, particularly in the right hemisphere. DC ratio had a significant indirect effect on working memory through its impact on prefrontal-amygdalar covariance, with higher DC ratios associated with a prefrontal-amygdalar covariance pattern predictive of higher scores on a measure of working memory. Taken together, these findings support the notion, as suggested by animal and in vitro studies, that there are opposing effects of DHEA and cortisol on brain development in humans, and that these effects may especially target prefrontal-amygdalar development and working memory, in a lateralized fashion.


Subject(s)
Amygdala/growth & development , Memory, Short-Term/physiology , Prefrontal Cortex/growth & development , Adolescent , Amygdala/drug effects , Amygdala/metabolism , Attention/physiology , Brain/growth & development , Cerebral Cortex/growth & development , Child , Child Development , Dehydroepiandrosterone/metabolism , Emotions/physiology , Female , Humans , Hydrocortisone/metabolism , Image Processing, Computer-Assisted , Longitudinal Studies , Male , Neurogenesis/physiology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Puberty/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...