Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sens ; 7(6): 1712-1719, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35604028

ABSTRACT

Although there are many techniques to detect pathogenic bacteria, most of them are only suited for in vitro diagnostics. We report a urinary catheter-based colorimetric sensor for potential on-body detection of E. coli, the most prevalent bacterial species in urinary tract infections associated with the use of urinary catheters. In urine, indole is secreted by E. coli and reacts with a nitrosating agent incorporated in a silicone catheter. A red dimeric product, indoxyl red, is generated within silicone rubber to allow for color-based indole sensing with high sensitivity, linearity, and specificity. This reaction is initiated by the nitrosation reaction of indole at its C-3 position via reagents like sodium nitrite or S-nitroso-N-acetyl-penicillamine under aerobic conditions. The generated 3-nitrosoindole undergoes tautomerization, dimerization, and deoximation to form indoxyl red with high absorbance at 537 nm. In contrast to other indole sensors, the presented method can be applied in real catheters to detect indole and E. coli in biofluids such as urine. The is because (1) S-nitroso-N-acetyl-penicillamine, the nitrosating agent, can be impregnated into silicone elastomers, (2) indole from urine is extracted into silicone due to its hydrophobicity, and (3) the high acidity and oxygen solubility of silicone facilitates the sensing reaction within the silicone matrix. This silicone-based colorimetric sensor clearly differentiates E. coli below and above 105 CFU/mL, which is the threshold concentration of bacteriuria. We expect that early diagnosis of urinary tract infections using the naked eye is possible by functionalizing an exposed section of urinary catheters with the proposed molecular probe.


Subject(s)
S-Nitrosothiols , Urinary Tract Infections , Colorimetry , Escherichia coli , Humans , Indoles , Penicillamine , Silicones , Urinary Catheters , Urinary Tract Infections/etiology , Urinary Tract Infections/microbiology
2.
Microbiol Resour Announc ; 10(33): e0030021, 2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34410150

ABSTRACT

Here, we report genome sequences of 10 Bacillus cereus group-infecting bacteriophages. Each virus was isolated from an environmental sample, contained a double-stranded DNA genome, and belonged to the Myoviridae family. Nine phages exhibit a conserved genome structure, and one phage appears novel in genome structure, sequence, and protein content.

SELECTION OF CITATIONS
SEARCH DETAIL
...