Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Neurosci ; 26(10): 1775-1790, 2023 10.
Article in English | MEDLINE | ID: mdl-37667039

ABSTRACT

The mesencephalic locomotor region (MLR) is a brain stem area whose stimulation triggers graded forward locomotion. How MLR neurons recruit downstream vsx2+ (V2a) reticulospinal neurons (RSNs) is poorly understood. Here, to overcome this challenge, we uncovered the locus of MLR in transparent larval zebrafish and show that the MLR locus is distinct from the nucleus of the medial longitudinal fasciculus. MLR stimulations reliably elicit forward locomotion of controlled duration and frequency. MLR neurons recruit V2a RSNs via projections onto somata in pontine and retropontine areas, and onto dendrites in the medulla. High-speed volumetric imaging of neuronal activity reveals that strongly MLR-coupled RSNs are active for steering or forward swimming, whereas weakly MLR-coupled medullary RSNs encode the duration and frequency of the forward component. Our study demonstrates how MLR neurons recruit specific V2a RSNs to control the kinematics of forward locomotion and suggests conservation of the motor functions of V2a RSNs across vertebrates.


Subject(s)
Mesencephalon , Zebrafish , Animals , Larva , Mesencephalon/physiology , Locomotion/physiology , Neurons/physiology , Spinal Cord/physiology , Electric Stimulation
2.
Mult Scler ; 28(2): 206-216, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34125626

ABSTRACT

BACKGROUND: Modifications in brain function remain relatively unexplored in progressive multiple sclerosis (PMS), despite their potential to provide new insights into the pathophysiology of the disease at this stage. OBJECTIVES: To characterize the dynamics of functional networks at rest in patients with PMS, and the relation with clinical disability. METHODS: Thirty-two patients with PMS underwent clinical and cognitive assessment. The dynamic properties of functional networks, retrieved from transient brain activity, were obtained from patients and 25 healthy controls (HCs). Sixteen HCs and 19 patients underwent a 1-year follow-up (FU) clinical and imaging assessment. Differences in the dynamic metrics between groups, their longitudinal changes, and the correlation with clinical disability were explored. RESULTS: PMS patients, compared to HCs, showed a reduced dynamic functional activation of the anterior default mode network (aDMN) and a decrease in its opposite-signed co-activation with the executive control network (ECN), at baseline and FU. Processing speed and visuo-spatial memory negatively correlated to aDMN dynamic activity. The anti-couplings between aDMN and auditory/sensory-motor network, temporal-pole/amygdala, or salience networks were differently associated with separate cognitive domains. CONCLUSION: Patients with PMS presented an altered aDMN functional recruitment and anti-correlation with ECN. The aDMN dynamic functional activity and interaction with other networks explained cognitive disability.


Subject(s)
Multiple Sclerosis , Brain/diagnostic imaging , Brain Mapping/methods , Default Mode Network , Executive Function/physiology , Humans , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging
3.
Sci Adv ; 7(42): eabj0751, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34652937

ABSTRACT

The extraction of "fingerprints" from human brain connectivity data has become a new frontier in neuroscience. However, the time scales of human brain identifiability are still largely unexplored. We here investigate the dynamics of brain fingerprints along two complementary axes: (i) What is the optimal time scale at which brain fingerprints integrate information and (ii) when best identification happens. Using dynamic identifiability, we show that the best identification emerges at longer time scales; however, short transient "bursts of identifiability," associated with neuronal activity, persist even when looking at shorter functional interactions. Furthermore, we report evidence that different parts of connectome fingerprints relate to different time scales, i.e., more visual-somatomotor at short temporal windows and more frontoparietal-DMN driven at increasing temporal windows. Last, different cognitive functions appear to be meta-analytically implicated in dynamic fingerprints across time scales. We hope that this investigation will advance our understanding of what makes our brains unique.

4.
Neuroimage ; 243: 118471, 2021 11.
Article in English | MEDLINE | ID: mdl-34455063

ABSTRACT

In the human brain, the corpus callosum is the major white-matter commissural tract enabling the transmission of sensory-motor, and higher level cognitive information between homotopic regions of the two cerebral hemispheres. Despite developmental absence (i.e., agenesis) of the corpus callosum (AgCC), functional connectivity is preserved, including interhemispheric connectivity. Subcortical structures have been hypothesised to provide alternative pathways to enable this preservation. To test this hypothesis, we used functional Magnetic Resonance Imaging (fMRI) recordings in children with AgCC and typically developing children, and a time-resolved approach to retrieve temporal characteristics of whole-brain functional networks. We observed an increased engagement of the cerebellum and amygdala/hippocampus networks in children with AgCC compared to typically developing children. There was little evidence that laterality of activation networks was affected in AgCC. Our findings support the hypothesis that subcortical structures play an essential role in the functional reconfiguration of the brain in the absence of a corpus callosum.


Subject(s)
Agenesis of Corpus Callosum/diagnostic imaging , Functional Laterality/physiology , Adolescent , Cerebellum/diagnostic imaging , Child , Connectome , Corpus Callosum/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Neuronal Plasticity , White Matter
5.
IEEE Trans Med Imaging ; 39(4): 1094-1103, 2020 04.
Article in English | MEDLINE | ID: mdl-31545714

ABSTRACT

Recent technological advances in light-sheet microscopy make it possible to perform whole-brain functional imaging at the cellular level with the use of Ca2+ indicators. The outstanding spatial extent and resolution of this type of data open unique opportunities for understanding the complex organization of neuronal circuits across the brain. However, the analysis of this data remains challenging because the observed variations in fluorescence are, in fact, noisy indirect measures of the neuronal activity. Moreover, measuring over large field-of-view negatively impact temporal resolution and signal-to-noise ratio, which further impedes conventional spike inference. Here we argue that meaningful information can be extracted from large-scale functional imaging data by deconvolving with the calcium response and by modeling moments of sustained neuronal activity instead of individual spikes. Specifically, we characterize the calcium response by a linear system of which the inverse is a differential operator. This operator is then included in a regularization term promoting sparsity of activity transients through generalized total variation. Our results illustrate the numerical performance of the algorithm on simulated signals; i.e., we show the firing rate phase transition at which our model outperforms spike inference. Finally, we apply the proposed algorithm to experimental data from zebrafish larvæ. In particular, we show that, when applied to a specific group of neurons, the algorithm retrieves neural activation that matches the locomotor behavior unknown to the method.


Subject(s)
Brain , Calcium , Microscopy, Fluorescence/methods , Algorithms , Animals , Brain/cytology , Brain/diagnostic imaging , Brain/metabolism , Calcium/analysis , Calcium/metabolism , Larva/chemistry , Larva/metabolism , Neurons/chemistry , Neurons/metabolism , Signal-To-Noise Ratio , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...