Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13015, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844752

ABSTRACT

Calcium hydroxide (Ca(OH)2NPs), calcium titanate (CaTiO3NPs) and yttrium oxide (Y2O3NPs) nanoparticles are prevalent in many industries, including food and medicine, but their small size raises concerns about potential cellular damage and genotoxic effects. However, there are very limited studies available on their genotoxic effects. Hence, this was done to investigate the effects of multiple administration of Ca(OH)2NPs, CaTiO3NPs or/and Y2O3NPs on genomic DNA stability, mitochondrial membrane potential integrity and inflammation induction in mouse brain tissues. Mice were orally administered Ca(OH)2NPs, CaTiO3NPs or/and Y2O3NPs at a dose level of 50 mg/kg b.w three times a week for 2 weeks. Genomic DNA integrity was studied using Comet assay and the level of reactive oxygen species (ROS) within brain cells was analyzed using 2,7 dichlorofluorescein diacetate dye. The expression level of Presenilin-1, tumor necrosis factor-alpha (TNF-α) and Interleukin-6 (IL-6) genes and the integrity of the mitochondrial membrane potential were also detected. Oral administration of Ca(OH)2NPs caused the highest damage to genomic DNA and mitochondrial membrane potential, less genomic DNA and mitochondrial damage was induced by CaTiO3NPs administration while administration of Y2O3NPs did not cause any remarkable change in the integrity of genomic DNA and mitochondrial membrane potential. Highest ROS generation and upregulation of presenilin-1, TNF-α and IL-6 genes were also observed within the brain cells of mice administrated Ca(OH)2NPs but Y2O3NPs administration almost caused no changes in ROS generation and genes expression compared to the negative control. Administration of CaTiO3NPs alone slightly increased ROS generation and the expression level of TNF-α and IL-6 genes. Moreover, no remarkable changes in the integrity of genomic DNA and mitochondrial DNA potential, ROS level and the expression level of presenilin-1, TNF-α and IL-6 genes were noticed after simultaneous coadministration of Y2O3NPs with Ca(OH)2NPs and CaTiO3NPs. Coadministration of Y2O3NPs with Ca(OH)2NPs and CaTiO3NPs mitigated Ca(OH)2NPs and CaTiO3NPs induced ROS generation, genomic DNA damage and inflammation along with restoring the integrity of mitochondrial membrane potential through Y2O3NPs scavenging free radicals ability. Therefore, further studies are recommended to study the possibility of using Y2O3NPs to alleviate Ca(OH)2NPs and CaTiO3NPs induced genotoxic effects.


Subject(s)
Calcium Hydroxide , DNA Damage , Inflammation , Membrane Potential, Mitochondrial , Nanoparticles , Reactive Oxygen Species , Titanium , Yttrium , Animals , Reactive Oxygen Species/metabolism , Mice , DNA Damage/drug effects , Calcium Hydroxide/pharmacology , Membrane Potential, Mitochondrial/drug effects , Titanium/chemistry , Titanium/toxicity , Inflammation/metabolism , Inflammation/pathology , Yttrium/chemistry , Nanoparticles/chemistry , Mitochondria/metabolism , Mitochondria/drug effects , Male , Brain/metabolism , Brain/drug effects , Brain/pathology , DNA, Mitochondrial/metabolism
2.
Sci Rep ; 14(1): 10964, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744871

ABSTRACT

Due to vincristine sulfate's (VCR sulfate) toxicity and non-specific targeting, which might adversely damage healthy cells, its clinical application is restricted. In this study, we loaded VCR sulfate on exosomes generated from mesenchymal stem cells (MSCs) to enhance its targeted distribution. Exosomes are able to deliver molecules to specific cells and tissues and have therapeutic potential. In this study, we isolated exosomes from MSCs, and using probe-sonication approach loaded them with VCR sulfate. Using SRB assay, the cytotoxicity of VCR sulfate-Exo was assessed in T47D breast cancer cells, and the results were contrasted with those of free VCR sulfate. Then We labeled markers (CD44+/CD24-) in the cell line to assess the targeting effectiveness of VCR sulfate-Exo using flow cytometry. Our results showed that the cytotoxicity of VCR sulfate-Exo was nearly the same as that of VCR sulfate. Flow cytometry analysis revealed that VRC sulfate-Exo was more effectively targeted to MSCs than free VCR sulfate. Our study shows that loading VCR sulfate to MSCs-derived exosomes can improve their targeted delivery and lessen their side effects. Additional research is required to determine VCR sulfate-Exo's in vivo effectiveness and safety and improve the loading and delivery strategies.


Subject(s)
Breast Neoplasms , Exosomes , Mesenchymal Stem Cells , Neoplastic Stem Cells , Vincristine , Exosomes/metabolism , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Vincristine/pharmacology , Drug Carriers/chemistry
3.
Sci Rep ; 13(1): 22011, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38086889

ABSTRACT

Diverse applications of nanoparticles due to their unique properties has rapidly increased human exposure to numerous nanoparticles such as calcium hydroxide (Ca(OH)2), calcium titanate (CaTiO3), and yttrium oxide (Y2O3) nanoparticles almost in all aspect of daily life. However, very limited data are available on the effect of these nanoparticles on genomic DNA integrity and inflammation induction in the gastric tissues. Hence, this study estimated the effect of Ca(OH)2, CaTiO3, or/and Y2O3 nanoparticles multiple oral administration on the genomic DNA damage and inflammation induction in the mice gastric tissues. A suspension containing 50 mg/kg b.w of Ca(OH)2, CaTiO3, or Y2O3 nanoparticles were given orally to male mice separately or together simultaneously three times a week for two consecutive weeks. Multiple oral administration of Ca(OH)2 nanoparticles led to significant elevations in DNA damage induction and ROS generation, in contrast to the non-significant changes observed in the level of induced DNA damage and generated ROS after administration of CaTiO3 or Y2O3 nanoparticles separately or in combination with Ca(OH)2 nanoparticles. Oral administration of Ca(OH)2 nanoparticles alone also highly upregulated INOS and COX-2 genes expression and extremely decreased eNOS gene expression. However, high elevations in eNOS gene expression were detected after multiple administration of CaTiO3 and Y2O3 nanoparticles separately or together simultaneously with Ca(OH)2 nanoparticles. Meanwhile, non-remarkable changes were noticed in the expression level of INOS and COX-2 genes after administration of CaTiO3 and Y2O3 nanoparticles separately or simultaneously together with Ca(OH)2 nanoparticles. In conclusion: genomic DNA damage and inflammation induced by administration of Ca(OH)2 nanoparticles alone at a dose of 50 mg/kg were mitigated by about 100% when CaTiO3 and Y2O3 nanoparticles were coadministered with Ca(OH)2 nanoparticles until they reached the negative control level through altering the expression level of eNOS, INOS and COX-2 genes and scavenging gastric ROS. Therefore, further studies are recommended to investigate the toxicological properties of Ca(OH)2, CaTiO3 and Y2O3 nanoparticles and possibility of using CaTiO3 and Y2O3 nanoparticles to mitigate genotoxicity and inflammation induction by Ca(OH)2 nanoparticles.


Subject(s)
Gastritis , Nanoparticles , Humans , Mice , Male , Animals , Calcium Hydroxide/toxicity , Reactive Oxygen Species/metabolism , Cyclooxygenase 2/genetics , Yttrium , DNA Damage , Inflammation
4.
Sci Rep ; 13(1): 19633, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37949924

ABSTRACT

Intensive uses of Calcium hydroxide (Ca(OH)2NPs), calcium titanate (CaTiO3NPs) and yttrium oxide (Y2O3NPs) nanoparticles increase their environmental release and human exposure separately or together through contaminated air, water and food. However, too limited data are available on their genotoxicity. Therefore, this study explored the effect of Ca(OH)2NPs, CaTiO3NPs or/and Y2O3NPs administration on the genotoxicityand oxidative stress induction in mice hepatic tissue. Mice were orally administered Ca(OH)2NPs, CaTiO3NPs and Y2O3NPs separately or simultaneously together at a dose level of 50 mg/kg b.w. for two successive weeks (3 days per week). Marked induction of DNA damage noticed after oral administration of Ca(OH)2NPs or CaTiO3NPs alone together with high Ca(OH)2NPs induced reactive oxygen species (ROS) generation and a slight CaTiO3NPs induced ROS production were highly decreased after simultaneous coadministration of administration of Y2O3NPs with Ca(OH)2NPs and CaTiO3NPs up to the negative control level. Oral administration of Y2O3NPs alone also did not cause observable changes in the genomic DNA integrity and the ROS generation level compared to the negative control levels. Similarly, significant elevations in P53 gene expression and high reductions in Kras and HSP-70 genes expression were observed only after administration of Ca(OH)2NPs alone, while, remarkable increases in the Kras and HSP-70 genes expression and non-significant changes in p53 gene expression were noticed after administration of CaTiO3NPs and Y2O3NPs separately or simultaneously together with Ca(OH)2NPs. Conclusion: Ca(OH)2NPs exhibited the highest genotoxic effect through oxidative stress induction and disruption of apoptotic (p53 and Kras) and protective (HSP-70) genes expression. Slight DNA damage was noticed after CaTiO3NPs administration. However, administration of Y2O3NPs alone was non-genotoxic and coadministration of Y2O3NPs with Ca(OH)2NPs and CaTiO3NPs restored genomic DNA integrity and normal expression of apoptotic p53 and protective HSP-70 genes disrupted by Ca(OH)2NPs and CaTiO3NPs. Thus co-administration of Y2O3NPs with Ca(OH)2NPs and CaTiO3NPs is recommended to counter Ca(OH)2NPs and CaTiO3NPs induced genotoxicity and oxidative stress.


Subject(s)
Calcium , Nanoparticles , Mice , Humans , Animals , Calcium/metabolism , Reactive Oxygen Species/metabolism , Calcium Hydroxide/toxicity , Proto-Oncogene Proteins p21(ras)/genetics , Oxidative Stress , Tumor Suppressor Protein p53/metabolism , Nanoparticles/toxicity , DNA Damage , DNA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...