Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 22010, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39317707

ABSTRACT

Biodiesel is rapidly becoming an efficient substitute for fuel and a potentially significant future renewable energy source. In recent years, used cooking oil has been used as a feedstock for biofuel to reduce production costs. Due to its high catalytic activity, low cost, and eco-friendliness, Nano magnesium oxide (MgO) has attracted attention as a catalyst for biodiesel production. Our work presents the preparation of nanomagnesium oxide (MgO) by the sol-gel method, and its characterization. Optimum conditions and the productive combination of waste cooking oil, methanol, and the synthesized nanocatalyst were predicted using response surface methodology. The optimum conditions were methanol to oil ratio of 7:1, temperature of 50 °C and time of 60 min. The expected values for the yield of biodiesel production responses are quite like the actual values, demonstrating the consistency of the models used for establishing a relationship between the independent process variables and the responses. The predicted model's F-value was 9.09 indicating that the model is significant. The model's pure error had a poor correlation, as the "Lack of Fit F-values" 4.16. The quadratic model fits the data well because the R-squared value for the model equation 92%. The expected values for the yield of biodiesel production responses are quite like the actual values, demonstrating the consistency of the models used for establishing a relationship between the independent process variables and the responses. Biodiesel was characterized using gas chromatography-mass spectrometry and Fourier transform infrared spectroscopy.

2.
Environ Sci Pollut Res Int ; 31(9): 12722-12747, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38253825

ABSTRACT

Biodiesel, a renewable and sustainable alternative to fossil fuels, has garnered significant attention as a potential solution to the growing energy crisis and environmental concerns. The review commences with a thorough examination of feedstock selection and preparation, emphasizing the critical role of feedstock quality in ensuring optimal biodiesel production efficiency and quality. Next, it delves into the advancements in biodiesel applications, highlighting its versatility and potential to reduce greenhouse gas emissions and dependence on fossil fuels. The heart of the review focuses on transesterification, the key process in biodiesel production. It provides an in-depth analysis of various catalysts, including homogeneous, heterogeneous, enzyme-based, and nanomaterial catalysts, exploring their distinct characteristics and behavior during transesterification. The review also sheds light on the transesterification reaction mechanism and kinetics, emphasizing the importance of kinetic modeling in process optimization. Recent developments in biodiesel production, including feedstock selection, process optimization, and sustainability, are discussed, along with the challenges related to engine performance, emissions, and compatibility that hinder wider biodiesel adoption. The review concludes by emphasizing the need for ongoing research, development, and collaboration among academia, industry, and policymakers to address the challenges and pursue further research in biodiesel production. It outlines specific recommendations for future research, paving the way for the widespread adoption of biodiesel as a renewable energy source and fostering a cleaner and more sustainable future.


Subject(s)
Biofuels , Fossil Fuels , Esterification , Catalysis , Industry
3.
Biomark Med ; 16(13): 959-970, 2022 09.
Article in English | MEDLINE | ID: mdl-36052661

ABSTRACT

Aim: To investigate potential DNA methylation in methylcytosine dioxygenases and correlation of TET genes with vitamin B12/ferritin levels in cancer patients. Materials & methods: 200 blood samples were obtained from both cancer patients and healthy individuals. Results: The expression of DNMT1, DNMT3a and DNMT3b was increased in patients with low vitamin B12 and ferritin levels, while the expression of MTR, TET1 and TET3 significantly decreased. DNA methylation analysis in patients with deficient vitamin B12/ferritin levels showed methylomic changes within the location 318/CG and 385/CG in the promoter region of TET1 and TET3, respectively. Conclusion: Vitamin B12/ferritin deficiency contributes to DNA methylation progress in cancer patients.


Subject(s)
Dioxygenases , Neoplasms , 5-Methylcytosine/metabolism , DNA Methylation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Epigenesis, Genetic , Ferritins/metabolism , Humans , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Neoplasms/complications , Neoplasms/genetics , Promoter Regions, Genetic , Proto-Oncogene Proteins/genetics , Vitamin B 12
SELECTION OF CITATIONS
SEARCH DETAIL