Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 42(21): e113975, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37718683

ABSTRACT

Paneth cells (PCs), a specialized secretory cell type in the small intestine, are increasingly recognized as having an essential role in host responses to microbiome and environmental stresses. Whether and how commensal and pathogenic microbes modify PC composition to modulate inflammation remain unclear. Using newly developed PC-reporter mice under conventional and gnotobiotic conditions, we determined PC transcriptomic heterogeneity in response to commensal and invasive microbes at single cell level. Infection expands the pool of CD74+ PCs, whose number correlates with auto or allogeneic inflammatory disease progressions in mice. Similar correlation was found in human inflammatory disease tissues. Infection-stimulated cytokines increase production of reactive oxygen species (ROS) and expression of a PC-specific mucosal pentraxin (Mptx2) in activated PCs. A PC-specific ablation of MyD88 reduced CD74+ PC population, thus ameliorating pathogen-induced systemic disease. A similar phenotype was also observed in mice lacking Mptx2. Thus, infection stimulates expansion of a PC subset that influences disease progression.


Subject(s)
Microbiota , Paneth Cells , Humans , Animals , Mice , Paneth Cells/metabolism , Paneth Cells/pathology , Intestine, Small , Inflammation/pathology , Cytokines/metabolism
2.
J Infect Dis ; 215(8): 1294-1302, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28186296

ABSTRACT

Understanding the mechanisms by which Entamoeba histolytica drives gut inflammation is critical for the development of improved preventive and therapeutic strategies. E. histolytica encodes a homolog of the human cytokine macrophage migration inhibitory factor (MIF). Here, we investigated the role of E. histolytica MIF (EhMIF) during infection. We found that the concentration of fecal EhMIF correlated with the level of intestinal inflammation in persons with intestinal amebiasis. Mice treated with antibodies that specifically block EhMIF had reduced chemokine expression and neutrophil infiltration in the mucosa. In addition to antibody-mediated neutralization, we used a genetic approach to test the effect of EhMIF on mucosal inflammation. Mice infected with parasites overexpressing EhMIF had increased chemokine expression, neutrophil influx, and mucosal damage. Together, these results uncover a specific parasite protein that increases mucosal inflammation, expands our knowledge of host-parasite interaction during amebic colitis, and highlights a potential immunomodulatory target.


Subject(s)
Dysentery, Amebic/pathology , Macrophage Migration-Inhibitory Factors/immunology , Neutrophils/immunology , Protozoan Proteins/immunology , Animals , Antibodies, Blocking/pharmacology , Caco-2 Cells , Cell Culture Techniques , Child, Preschool , Dysentery, Amebic/drug therapy , Entamoeba histolytica/drug effects , Feces/chemistry , Host-Parasite Interactions , Humans , Intestinal Mucosa/parasitology , Intestinal Mucosa/pathology , Macrophage Migration-Inhibitory Factors/genetics , Male , Mice , Mice, Inbred CBA , Neutrophil Infiltration/drug effects , Protozoan Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...