Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res Commun ; 3(9): 1927-1939, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37721518

ABSTRACT

The oncogenic receptor HER2 is overexpressed in many cancers, including up to 20% of breast cancers. Despite the availability of HER2-targeted treatments, patients' disease often progresses during therapy, underscoring the need for novel treatment strategies. The addition of tucatinib, a reversible, highly selective HER2 tyrosine kinase inhibitor (TKI), to treatment with trastuzumab and capecitabine significantly improved survival outcomes of patients with HER2-positive metastatic breast cancer, including those with active brain metastases. We rationalized that combining tucatinib with other HER2-targeting agents with complementary mechanisms of action would further increase efficacy against tumors. We characterized the activity of tucatinib with the antibody­drug conjugate T-DM1 in preclinical models of breast cancer, including HER2-positive breast cancer cells and patient-derived xenograft (PDX) models. Mechanistic details on tucatinib activity were obtained in internalization and catabolism studies. In combination, tucatinib and T-DM1 showed an enhanced, often synergistic, cytotoxic response and demonstrated improved antitumor activity in vivo, including in PDX models refractory to T-DM1 single-agent activity. Mechanistically, tucatinib mediated an increase in inactive HER2 molecules at the cell surface through inhibition of HER2 ubiquitination, resulting in increased internalization and catabolism of T-DM1. The combination was correlated with enhanced HER2 pathway inhibition, decreased proliferation, and increased apoptosis. In a xenograft model of brain metastasis, tucatinib penetrated intracranial tumor tissues, inhibiting tumor growth and improving survival. These results suggest that tucatinib may be the optimal TKI partner for HER2-targeted therapies and support clinical studies of its combination with T-DM1, including in patients with brain metastases. SIGNIFICANCE: The preclinical findings in breast cancer models presented here demonstrate that combining tucatinib with T-DM1 enhances the antitumor activity of either agent alone, supporting clinical studies of the combination in HER2-positive breast cancer, including in patients with brain metastases, which remains an important unmet medical need.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Trastuzumab , Receptor, ErbB-2 , Ado-Trastuzumab Emtansine
2.
Mol Cancer Ther ; 20(2): 329-339, 2021 02.
Article in English | MEDLINE | ID: mdl-33273058

ABSTRACT

We have developed a highly active and well-tolerated camptothecin (CPT) drug-linker designed for antibody-mediated drug delivery in which the lead molecule consists of a 7-aminomethyl-10,11-methylenedioxy CPT (CPT1) derivative payload attached to a novel hydrophilic protease-cleavable valine-lysine-glycine tripeptide linker. A defined polyethylene glycol stretcher was included to improve the properties of the drug-linker, facilitating high antibody-drug conjugate (ADC) drug loading, while reducing the propensity for aggregation. A CPT1 ADC with 8 drug-linkers/mAb displayed a pharmacokinetic profile coincident with parental unconjugated antibody and had high serum stability. The ADCs were broadly active against cancer cells in vitro and in mouse xenograft models, giving tumor regressions and complete responses at low (≤3 mg/kg, single administration) doses. Pronounced activities were obtained in both solid and hematologic tumor models and in models of bystander killing activity and multidrug resistance. Payload release studies demonstrated that two CPTs, CPT1 and the corresponding glycine analog (CPT2), were released from a cAC10 ADC by tumor cells. An ADC containing this drug-linker was well tolerated in rats at 60 mg/kg, given weekly four times. Thus, ADCs comprised of this valine-lysine-glycine linker with CPT drug payloads have promise in targeted drug delivery.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents, Phytogenic/therapeutic use , Camptothecin/therapeutic use , Animals , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Camptothecin/pharmacology , Disease Models, Animal , Female , Humans , Mice , Rats , Rats, Sprague-Dawley
3.
Proc Natl Acad Sci U S A ; 108(28): E288-97, 2011 Jul 12.
Article in English | MEDLINE | ID: mdl-21709225

ABSTRACT

Interactions between bacteria and the viruses that infect them (i.e., phages) have profound effects on biological processes, but despite their importance, little is known on the general structure of infection and resistance between most phages and bacteria. For example, are bacteria-phage communities characterized by complex patterns of overlapping exploitation networks, do they conform to a more ordered general pattern across all communities, or are they idiosyncratic and hard to predict from one ecosystem to the next? To answer these questions, we collect and present a detailed metaanalysis of 38 laboratory-verified studies of host-phage interactions representing almost 12,000 distinct experimental infection assays across a broad spectrum of taxa, habitat, and mode of selection. In so doing, we present evidence that currently available host-phage infection networks are statistically different from random networks and that they possess a characteristic nested structure. This nested structure is typified by the finding that hard to infect bacteria are infected by generalist phages (and not specialist phages) and that easy to infect bacteria are infected by generalist and specialist phages. Moreover, we find that currently available host-phage infection networks do not typically possess a modular structure. We explore possible underlying mechanisms and significance of the observed nested host-phage interaction structure. In addition, given that most of the available host-phage infection networks examined here are composed of taxa separated by short phylogenetic distances, we propose that the lack of modularity is a scale-dependent effect, and then, we describe experimental studies to test whether modular patterns exist at macroevolutionary scales.


Subject(s)
Bacteria/virology , Bacteriophages/physiology , Host-Pathogen Interactions/physiology , Bacteria/genetics , Bacterial Physiological Phenomena , Bacteriophage lambda/genetics , Bacteriophage lambda/pathogenicity , Bacteriophage lambda/physiology , Bacteriophages/genetics , Bacteriophages/pathogenicity , Biological Evolution , Biostatistics , Databases, Factual , Ecosystem , Escherichia coli/genetics , Escherichia coli/physiology , Escherichia coli/virology , Host-Pathogen Interactions/genetics , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...