Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38069080

ABSTRACT

Metabolic syndrome (MS) is a risk factor for breast cancer (BC) that increases its aggressiveness and metastasis. The prevalence of MS is higher in triple-negative breast cancer (TNBC), which is the molecular subtype with the worst prognosis. The molecular mechanisms underlying this association have not been fully elucidated. MiRNAs are small, non-coding RNAs that regulate gene expression. Aberrant expression of miRNAs in both tissues and fluids are linked to several pathologies. The aim of this work was to identify circulating miRNAs in patients with alterations associated with MS (AAMS) that also impact on BC. Using microarray technology, we detected 23 miRNAs altered in the plasma of women with AAMS that modulate processes linked to cancer. We found that let-7b-5p and miR-28-3p were decreased in plasma from patients with AAMS and also in BC tumors, while miR-877-5p was increased. Interestingly, miR-877-5p expression was associated with lower patient survival, and its expression was higher in PAM50 basal-like BC tumors compared to the other molecular subtypes. Analyses from public databases revealed that miR-877-5p was also increased in plasma from BC patients compared to plasma from healthy donors. We identified IGF2 and TIMP3 as validated target genes of miR-877-5p whose expression was decreased in BC tissue and moreover, was negatively correlated with the levels of this miRNA in the tumors. Finally, a miRNA inhibitor against miR-877-5p diminished viability and tumor growth of the TNBC model 4T1. These results reveal that miR-877-5p inhibition could be a therapeutic option for the treatment of TNBC. Further studies are needed to investigate the role of this miRNA in TNBC progression.


Subject(s)
Circulating MicroRNA , Metabolic Syndrome , MicroRNAs , Triple Negative Breast Neoplasms , Humans , Female , Triple Negative Breast Neoplasms/pathology , Metabolic Syndrome/genetics , MicroRNAs/metabolism , Circulating MicroRNA/therapeutic use , Gene Expression Regulation, Neoplastic
2.
Front Oncol ; 12: 997457, 2022.
Article in English | MEDLINE | ID: mdl-36387263

ABSTRACT

The incidence and mortality of Prostate Cancer (PCa) worldwide correlate with age and bad dietary habits. Previously, we investigated the mRNA/miRNA role on PCa development and progression using high fat diet (HFD) fed mice. Here our main goal was to investigate the effect of HFD on the expression of PCa-related miRNAs and their relevance in PCa patients. We identified 6 up- and 18 down-regulated miRNAs in TRAMP-C1 mice prostate tumors under HFD conditions using miRNA microarrays. Three down-regulated miRNAs: mmu-miR-133a-3p, -1a-3p and -29c-3p were validated in TRAMP-C1 mice prostate tumor by stem-loop RT-qPCR. Hsa-miR-133a-3p/1-3p expression levels were significantly decreased in PCa compared to normal tissues while hsa-miR-133a-3p was found to be further decreased in metastatic prostate cancer tumors compared to non-metastatic PCa. We examined the promoter region of hsa-miR-133a-3p/1-3p genes and compared methylation at these loci with mature miRNA expression. We found that hsa-miR-1-2/miR-133a-1 cluster promoter hypermethylation decreased hsa-miR-133a-3p/1-3p expression in PCa. GOLPH3 and JUP, two hsa-miR-133a-3p and miR-1-3p predicted target genes, were up-regulated in PCa. ROC analysis showed that the combination of hsa-miR-133a-3p, miR-1-3p, GOLPH3 and JUP is a promising panel biomarker to distinguish between PCa and normal adjacent tissue (NAT). These results link PCa aggressiveness to the attenuation of hsa-miR-133a-3p and miR-1-3p expression by promoter hypermethylation. Hsa-miR-133a-3p and miR-1-3p down-regulation may enhance PCa aggressiveness in part by targeting GOLPH3 and JUP.

3.
Int J Mol Sci ; 22(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34681793

ABSTRACT

Breast cancer (BCa) is the leading cause of death by cancer in women worldwide. This disease is mainly stratified in four subtypes according to the presence of specific receptors, which is important for BCa aggressiveness, progression and prognosis. MicroRNAs (miRNAs) are small non-coding RNAs that have the capability to modulate several genes. Our aim was to identify a miRNA signature deregulated in preclinical and clinical BCa models for potential biomarker discovery that would be useful for BCa diagnosis and/or prognosis. We identified hsa-miR-21-5p and miR-106b-5p as up-regulated and hsa-miR-205-5p and miR-143-3p as down-regulated in BCa compared to normal breast or normal adjacent (NAT) tissues. We established 51 shared target genes between hsa-miR-21-5p and miR-106b-5p, which negatively correlated with the miRNA expression. Furthermore, we assessed the pathways in which these genes were involved and selected 12 that were associated with cancer and metabolism. Additionally, GAB1, GNG12, HBP1, MEF2A, PAFAH1B1, PPP1R3B, RPS6KA3 and SESN1 were downregulated in BCa compared to NAT. Interestingly, hsa-miR-106b-5p was up-regulated, while GAB1, GNG12, HBP1 and SESN1 were downregulated in aggressive subtypes. Finally, patients with high levels of hsa-miR-106b-5 and low levels of the abovementioned genes had worse relapse free survival and worse overall survival, except for GAB1.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms , MicroRNAs/physiology , Animals , Biomarkers, Tumor/physiology , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Inbred BALB C , MicroRNAs/genetics , Neoplasm Invasiveness , Prognosis , Tumor Cells, Cultured
4.
Commun Biol ; 4(1): 150, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33526872

ABSTRACT

The use of digital pathology for the histomorphologic profiling of pathological specimens is expanding the precision and specificity of quantitative tissue analysis at an unprecedented scale; thus, enabling the discovery of new and functionally relevant histological features of both predictive and prognostic significance. In this study, we apply quantitative automated image processing and computational methods to profile the subcellular distribution of the multi-functional transcriptional regulator, Kaiso (ZBTB33), in the tumors of a large racially diverse breast cancer cohort from a designated health disparities region in the United States. Multiplex multivariate analysis of the association of Kaiso's subcellular distribution with other breast cancer biomarkers reveals novel functional and predictive linkages between Kaiso and the autophagy-related proteins, LC3A/B, that are associated with features of the tumor immune microenvironment, survival, and race. These findings identify effective modalities of Kaiso biomarker assessment and uncover unanticipated insights into Kaiso's role in breast cancer progression.


Subject(s)
Breast Neoplasms/metabolism , Microtubule-Associated Proteins/metabolism , Transcription Factors/metabolism , Tumor Microenvironment , Automation, Laboratory , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Fluorescent Antibody Technique , Gene Expression Regulation, Neoplastic , Humans , Image Interpretation, Computer-Assisted , Microscopy, Fluorescence , Microtubule-Associated Proteins/genetics , Prognosis , Retrospective Studies , Risk Assessment , Risk Factors , Signal Transduction , Time Factors , Tissue Array Analysis , Transcription Factors/genetics , Tumor Escape , United States/epidemiology
5.
Mol Oncol ; 14(11): 2868-2883, 2020 11.
Article in English | MEDLINE | ID: mdl-32875710

ABSTRACT

Prostate cancer (PCa) remains an important public health concern in Western countries. Metabolic syndrome (MeS) is a cluster of pathophysiological disorders with increasing prevalence in the general population that is a risk factor for PCa. Several studies have determined that a crosstalk between white adipose tissue (WAT) and solid tumors favors cancer aggressiveness. In this work, our main goal was to investigate the interaction between WAT and PCa cells through microRNAs (miRNAs), in MeS mice. We developed a MeS-like disease model using C57BL/6J mice chronically fed with high-fat diet (HFD) that were inoculated with TRAMP-C1 PCa cells. A group of five miRNAs (mmu-miR-221-3p, 27a-3p, 34a-5p, 138-5p, and 146a-5p) were increased in gonadal WAT (gWAT), tumors, and plasma of MeS mice compared to control animals. Three of these five miRNAs were detected in the media from gWAT and TRAMP-C1 cell cocultures, and significantly increased in MeS context. More importantly, hsa-miR-221-3p, 146a-5p, and 27a-3p were increased in bloodstream of PCa patients compared to healthy donors. Using miRNA microarrays, we found that 121 miRNAs were differentially released to the coculture media between HFD-gWAT and tumor cells compared to control diet-gWAT and tumor cells. Target genes for the 66 most deregulated miRNAs were involved in common pathways, mainly related to fatty acid metabolism, ER protein processing, amino acid degradation, PI3K AKT signaling, and PCa. Our findings show for the first time a signature of five miRNAs as important players involved in the interaction between WAT and PCa in MeS mice. Further research will be necessary to track these miRNAs in the interaction between these tissues as well as their role in PCa patients with MeS.


Subject(s)
Gene Expression Regulation, Neoplastic , Metabolic Syndrome/genetics , MicroRNAs/genetics , Prostatic Neoplasms/genetics , Transcriptome , Adipose Tissue/metabolism , Animals , Carcinogenesis/genetics , Gene Expression Profiling , Male , Mice, Inbred C57BL
6.
Cell Death Dis ; 10(4): 299, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30931931

ABSTRACT

About 20% of prostate cancer (PCa) patients progress to metastatic disease. Metabolic syndrome (MeS) is a pathophysiological disorder that increases PCa risk and aggressiveness. C-terminal binding protein (CTBP1) is a transcriptional corepressor that is activated by high-fat diet (HFD). Previously, our group established a MeS/PCa mice model that identified CTBP1 as a novel link associating both diseases. Here, we integrated in vitro (prostate tumor cell lines) and in vivo (MeS/PCa NSG mice) models with molecular and cell biology techniques to investigate MeS/CTBP1 impact over PCa progression, particularly over cell adhesion, mRNA/miRNA expression and PCa spontaneous metastasis development. We found that CTBP1/MeS regulated expression of genes relevant to cell adhesion and PCa progression, such as cadherins, integrins, connexins, and miRNAs in PC3 xenografts. CTBP1 diminished PCa cell adhesion, membrane attachment to substrate and increased filopodia number by modulating gene expression to favor a mesenchymal phenotype. NSG mice fed with HFD and inoculated with CTBP1-depleted PC3 cells, showed a decreased number and size of lung metastases compared to control. Finally, CTBP1 and HFD reduce hsa-mir-30b-5p plasma levels in mice. This study uncovers for the first time the role of CTBP1/MeS in PCa progression and its molecular targets.


Subject(s)
Alcohol Oxidoreductases/metabolism , Cell Adhesion/genetics , DNA-Binding Proteins/metabolism , Metabolic Syndrome/genetics , MicroRNAs/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , RNA, Messenger/genetics , Alcohol Oxidoreductases/genetics , Animals , DNA-Binding Proteins/genetics , Diet, High-Fat , Disease Models, Animal , Disease Progression , Gene Expression Regulation, Neoplastic , Heterografts/cytology , Heterografts/metabolism , Humans , Male , Metabolic Syndrome/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , MicroRNAs/metabolism , Neoplasm Metastasis , PC-3 Cells , Prostatic Neoplasms/pathology , Pseudopodia/genetics , Pseudopodia/metabolism , RNA, Messenger/metabolism
7.
Int J Cancer ; 144(5): 1115-1127, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30152543

ABSTRACT

Metabolic syndrome (MeS) increases prostate cancer (PCa) risk and aggressiveness. C-terminal binding protein 1 (CTBP1) is a transcriptional co-repressor of tumor suppressor genes that is activated by low NAD+ /NADH ratio. Previously, our group established a MeS and PCa mice model that identified CTBP1 as a novel link associating both diseases. We found that CTBP1 controls the transcription of aromatase (CYP19A1), a key enzyme that converts androgens to estrogens. The aim of this work was to investigate the mechanism that explains CTBP1 as a link between MeS and PCa based on CYP19A1 and estrogen synthesis regulation using PCa cell lines, MeS/PCa mice and adipose co-culture systems. We found that CTBP1 and E1A binding protein p300 (EP300) bind to CYP19A1 promoter and downregulate its expression in PC3 cells. Estradiol, through estrogen receptor beta, released CTBP1 from CYP19A1 promoter triggering its transcription and modulating PCa cell proliferation. We generated NSG and C57BL/6J MeS mice by chronically feeding animals with high fat diet. In the NSG model, CTBP1 depleted PCa xenografts showed an increase in CYP19A1 expression with subsequent increment in intratumor estradiol concentrations. Additionally, in C57BL/6J mice, MeS induced hypertrophy, hyperplasia and inflammation of the white adipose tissue, which leads to a proinflammatory phenotype and increased serum estradiol concentration. Thus, MeS increased PCa growth and Ctbp1, Fabp4 and IL-6 expression levels. These results describe, for the first time, a novel CTBP1/CYP19A1/Estradiol axis that explains, in part, the mechanism for prostate tumor growth increase by MeS.


Subject(s)
Adipose Tissue/pathology , Alcohol Oxidoreductases/genetics , Aromatase/genetics , Cell Proliferation/genetics , DNA-Binding Proteins/genetics , Estradiol/genetics , Metabolic Syndrome/genetics , Prostatic Neoplasms/genetics , Animals , Cell Line, Tumor , Coculture Techniques/methods , Down-Regulation/genetics , E1A-Associated p300 Protein/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Inflammation/genetics , Inflammation/pathology , Male , Metabolic Syndrome/pathology , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , PC-3 Cells , Promoter Regions, Genetic/genetics , Prostatic Neoplasms/pathology , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...