Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
CBE Life Sci Educ ; 17(1)2018.
Article in English | MEDLINE | ID: mdl-29326102

ABSTRACT

Many efforts to improve science teaching in higher education focus on a few faculty members at an institution at a time, with limited published evidence on attempts to engage faculty across entire departments. We created a long-term, department-wide collaborative professional development program, Biology Faculty Explorations in Scientific Teaching (Biology FEST). Across 3 years of Biology FEST, 89% of the department's faculty completed a weeklong scientific teaching institute, and 83% of eligible instructors participated in additional semester-long follow-up programs. A semester after institute completion, the majority of Biology FEST alumni reported adding active learning to their courses. These instructor self-reports were corroborated by audio analysis of classroom noise and surveys of students in biology courses on the frequency of active-learning techniques used in classes taught by Biology FEST alumni and nonalumni. Three years after Biology FEST launched, faculty participants overwhelmingly reported that their teaching was positively affected. Unexpectedly, most respondents also believed that they had improved relationships with departmental colleagues and felt a greater sense of belonging to the department. Overall, our results indicate that biology department-wide collaborative efforts to develop scientific teaching skills can indeed attract large numbers of faculty, spark widespread change in teaching practices, and improve departmental relations.


Subject(s)
Biology/education , Program Development , Teaching , Faculty , Goals , Humans , Motivation , Problem-Based Learning , Students , Surveys and Questionnaires
2.
Appl Environ Microbiol ; 77(4): 1405-12, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21131509

ABSTRACT

Microbiologically influenced corrosion (MIC) of mild steel in seawater is an expensive and enduring problem. Little attention has been paid to the role of neutrophilic, lithotrophic, iron-oxidizing bacteria (FeOB) in MIC. The goal of this study was to determine if marine FeOB related to Mariprofundus are involved in this process. To examine this, field incubations and laboratory microcosm experiments were conducted. Mild steel samples incubated in nearshore environments were colonized by marine FeOB, as evidenced by the presence of helical iron-encrusted stalks diagnostic of the FeOB Mariprofundus ferrooxydans, a member of the candidate class "Zetaproteobacteria." Furthermore, Mariprofundus-like cells were enriched from MIC biofilms. The presence of Zetaproteobacteria was confirmed using a Zetaproteobacteria-specific small-subunit (SSU) rRNA gene primer set to amplify sequences related to M. ferrooxydans from both enrichments and in situ samples of MIC biofilms. Temporal in situ incubation studies showed a qualitative increase in stalk distribution on mild steel, suggesting progressive colonization by stalk-forming FeOB. We also isolated a novel FeOB, designated Mariprofundus sp. strain GSB2, from an iron oxide mat in a salt marsh. Strain GSB2 enhanced uniform corrosion from mild steel in laboratory microcosm experiments conducted over 4 days. Iron concentrations (including precipitates) in the medium were used as a measure of corrosion. The corrosion in biotic samples (7.4 ± 0.1 mM) was significantly higher than that in abiotic controls (5.0 ± 0.1 mM). These results have important implications for the role of FeOB in corrosion of steel in nearshore and estuarine environments. In addition, this work shows that the global distribution of Zetaproteobacteria is far greater than previously thought.


Subject(s)
Corrosion , Iron/chemistry , Proteobacteria , Steel/chemistry , Autotrophic Processes , Biofilms , Electrochemistry , Ferric Compounds/chemistry , Ferric Compounds/metabolism , Genes, rRNA , Microscopy, Electron , Molecular Sequence Data , Oxidation-Reduction , Proteobacteria/classification , Proteobacteria/growth & development , Proteobacteria/isolation & purification , Proteobacteria/metabolism , RNA, Ribosomal , Seawater/microbiology , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...