Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Haematologica ; 105(2): 457-467, 2020.
Article in English | MEDLINE | ID: mdl-31101754

ABSTRACT

Aberrant glycosylation resulting from altered expression of sialyltransferases, such as ST3 ß-galactoside α2-3-sialyltransferase 6, plays an important role in disease progression in multiple myeloma (MM). Hypersialylation can lead to increased immune evasion, drug resistance, tumor invasiveness, and disseminated disease. In this study, we explore the in vitro and in vivo effects of global sialyltransferase inhibition on myeloma cells using the pan-sialyltransferase inhibitor 3Fax-Neu5Ac delivered as a per-acetylated methyl ester pro-drug. Specifically, we show in vivo that 3Fax-Neu5Ac improves survival by enhancing bortezomib sensitivity in an aggressive mouse model of MM. However, 3Fax-Neu5Ac treatment of MM cells in vitro did not reverse bortezomib resistance conferred by bone marrow (BM) stromal cells. Instead, 3Fax-Neu5Ac significantly reduced interactions of myeloma cells with E-selectin, MADCAM1 and VCAM1, suggesting that reduced sialylation impairs extravasation and retention of myeloma cells in the BM. Finally, we showed that 3Fax-Neu5Ac alters the post-translational modification of the α4 integrin, which may explain the reduced affinity of α4ß1/α4ß7 integrins for their counter-receptors. We propose that inhibiting sialylation may represent a valuable strategy to restrict myeloma cells from entering the protective BM microenvironment, a niche in which they are normally protected from chemotherapeutic agents such as bortezomib. Thus, our work demonstrates that targeting sialylation to increase the ratio of circulating to BM-resident MM cells represents a new avenue that could increase the efficacy of other anti-myeloma therapies and holds great promise for future clinical applications.


Subject(s)
Multiple Myeloma , Animals , Bortezomib , Cell Adhesion Molecules , Cell Communication , E-Selectin/genetics , Humans , Mice , Mucoproteins , Multiple Myeloma/drug therapy , Sialyltransferases/genetics , Tumor Microenvironment
2.
Article in English | MEDLINE | ID: mdl-29765356

ABSTRACT

It is becoming clear that myeloma cell-induced disruption of the highly organized bone marrow components (both cellular and extracellular) results in destruction of the marrow and support for multiple myeloma (MM) cell proliferation, survival, migration, and drug resistance. Since the first phase I clinical trial on bortezomib was published 15 years ago, proteasome inhibitors (PIs) have become increasingly common for treatment of MM and are currently an essential part of any anti-myeloma combination therapy. PIs, either the first generation (bortezomib), second generation (carfilzomib) or oral agent (ixazomib), all take advantage of the heavy reliance of myeloma cells on the 26S proteasome for their degradation of excessive or misfolded proteins. Inhibiting the proteasome can create a crisis specifically for myeloma cells due to their rapid production of immunoglobulins. PIs have relatively few side effects and can be very effective, especially in combination therapy. If PI resistance can be overcome, these drugs may prove even more useful to a greater range of patients. Both soluble and insoluble (contact mediated) signals drive PI-resistance via activation of various intracellular signaling pathways. This review discusses the currently known mechanisms of non-autonomous (microenvironment dependent) mechanisms of PI resistance in myeloma cells. We also introduce briefly cell-autonomous and stress-mediated mechanisms of PI resistance. Our goal is to help researchers design better ways to study and overcome PI resistance, to ultimately design better combination therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...