Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Addict Neurosci ; 32022 Sep.
Article in English | MEDLINE | ID: mdl-36156918

ABSTRACT

Opioid addiction is a chronic, relapsing disorder. Whether addicted individuals are forced to abstain or they decide themselves to quit using drugs, relapse rates are high-especially upon encountering contexts and stimuli associated with prior opioid use. Rodents similarly show context- and cue-induced reinstatement of drug seeking following abstinence, and intriguingly, the neural circuits underlying these relapse-like behaviors differ when abstinence is involuntarily imposed, responding is extinguished, or animals decide themselves to cease taking drug. Here, we employ two complementary rat behavioral models of relapse-like behavior for the highly reinforcing opioid drug remifentanil, and asked whether GABAergic neurons in the ventral pallidum (VPGABA) control opioid seeking under these behavioral conditions. Specifically, we asked how chemogenetically stimulating VPGABA neurons with clozapine-N-oxide (CNO) influences the ability of contextual or discrete remifentanil-paired cues to reinstate drug seeking following either voluntary abstinence (punishment-induced; GroupPunish), or extinction training (GroupExt). In GroupPunish rats, we also chemogenetically inhibited VPGABA neurons, and examined spontaneous VP activity (Fos) during cued reinstatement. In both GroupPunish and GroupExt rats, stimulating Gq-signaling in VPGABA neurons augmented remifentanil reinstatement in a cue- and context-dependent manner. Conversely, engaging inhibitory Gi-signaling in VPGABA neurons in GroupPunish suppressed cue-induced reinstatement, and cue-triggered seeking was correlated with Fos expression in rostral, but not caudal VP. Neither stimulating nor inhibiting VPGABA neurons influenced unpunished remifentanil self-administration. We conclude that VPGABA neurons bidirectionally control opioid seeking regardless of the specific relapse model employed, highlighting their fundamental role in opioid relapse-like behavior across behavioral models, and potentially across species.

2.
J Neurosci ; 41(20): 4500-4513, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33837052

ABSTRACT

Pursuing rewards while avoiding danger is an essential function of any nervous system. Here, we examine a new mechanism helping rats negotiate the balance between risk and reward when making high-stakes decisions. Specifically, we focus on GABA neurons within an emerging mesolimbic circuit nexus: the ventral pallidum (VP). These neurons play a distinct role from other VP neurons in simple motivated behaviors in mice, but their role in more complex motivated behaviors is unknown. Here, we interrogate the behavioral functions of VPGABA neurons in male and female transgenic GAD1:Cre rats (and WT littermates), using a reversible chemogenetic inhibition approach. Using a behavioral assay of risky decision-making, and of the food-seeking and shock-avoidance components of this task, we show that engaging inhibitory Gi/o signaling specifically in VPGABA neurons suppresses motivation to pursue highly salient palatable foods, and possibly also motivation to avoid being shocked. In contrast, inhibiting these neurons did not affect seeking of low-value food, free consumption of palatable food, or unconditioned affective responses to shock. Accordingly, when rats considered whether to pursue food despite potential for shock in a risky decision-making task, inhibiting VPGABA neurons caused them to more readily select a small but safe reward over a large but dangerous one, an effect not seen in the absence of shock threat. Together, results indicate that VPGABA neurons are critical for high-stakes adaptive responding that is necessary for survival, but which may also malfunction in psychiatric disorders.SIGNIFICANCE STATEMENT In a dynamic world, it is essential to implement appropriate behaviors under circumstances involving rewards, threats, or both. Here, we demonstrate a crucial role for VPGABA neurons in high-stakes motivated behavior of several types. We show that this VPGABA role in motivation impacts decision-making, as inhibiting these neurons yields a conservative, risk-averse strategy not seen when the task is performed without threat of shock. These new roles for VPGABA neurons in behavior may inform future strategies for treating addiction, and other disorders of maladaptive decision-making.


Subject(s)
Basal Forebrain/physiology , Choice Behavior/physiology , GABAergic Neurons/physiology , Motivation/physiology , Animals , Female , Male , Rats , Rats, Transgenic , Reward
3.
Nat Commun ; 10(1): 4627, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31604917

ABSTRACT

Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are a popular chemogenetic technology for manipulation of neuronal activity in uninstrumented awake animals with potential for human applications as well. The prototypical DREADD agonist clozapine N-oxide (CNO) lacks brain entry and converts to clozapine, making it difficult to apply in basic and translational applications. Here we report the development of two novel DREADD agonists, JHU37152 and JHU37160, and the first dedicated 18F positron emission tomography (PET) DREADD radiotracer, [18F]JHU37107. We show that JHU37152 and JHU37160 exhibit high in vivo DREADD potency. [18F]JHU37107 combined with PET allows for DREADD detection in locally-targeted neurons, and at their long-range projections, enabling noninvasive and longitudinal neuronal projection mapping.


Subject(s)
Designer Drugs , Fluorine Radioisotopes/analysis , Neuronal Tract-Tracers/analysis , Animals , Brain , Clozapine/analogs & derivatives , Clozapine/chemistry , HEK293 Cells , Haplorhini , Humans , Ligands , Neuroanatomical Tract-Tracing Techniques/methods , Neuronal Tract-Tracers/chemistry , Positron-Emission Tomography/methods , Rodentia
4.
Neuropsychopharmacology ; 44(13): 2174-2185, 2019 12.
Article in English | MEDLINE | ID: mdl-31476762

ABSTRACT

Addiction is a chronic relapsing disorder, and during recovery many people experience several relapse events as they attempt to voluntarily abstain from drug. New preclinical relapse models have emerged that capture this common human experience, and mounting evidence indicates that resumption of drug seeking after voluntary abstinence recruits neural circuits distinct from those recruited during reinstatement after experimenter-imposed abstinence, or abstinence due to extinction training. Ventral pallidum (VP), a key limbic node involved in drug seeking, has well-established roles in conventional reinstatement models tested following extinction training, but it is unclear whether this region also participates in more translationally relevant models of relapse. Here we show that chemogenetic inhibition of VP neurons decreased cocaine-, context-, and cue-induced relapse tested after voluntary, punishment-induced abstinence. This effect was strongest in the most compulsive, punishment-resistant rats, and reinstatement was associated with neural activity in anatomically defined VP subregions. VP inhibition also attenuated the propensity of rats to display "abortive lever pressing," a species-typical risk assessment behavior seen here during punished drug taking, likely resulting from concurrent approach and avoidance motivations. These results indicate that VP, unlike other connected limbic brain regions, is essential for resumption of drug seeking after voluntary abstinence. Since VP inhibition effects were strongest in the most compulsively cocaine-seeking individuals, this may also indicate that VP plays a particularly important role in the most pathological, addiction-like behavior, making it an attractive target for future therapeutic interventions.


Subject(s)
Basal Forebrain/drug effects , Basal Forebrain/physiology , Cocaine/administration & dosage , Drug-Seeking Behavior/physiology , Punishment , Animals , Conditioning, Operant/drug effects , Female , Male , Rats, Long-Evans , Recurrence
5.
Prog Neuropsychopharmacol Biol Psychiatry ; 87(Pt A): 33-47, 2018 12 20.
Article in English | MEDLINE | ID: mdl-29305936

ABSTRACT

Addiction is a chronic relapsing disorder, in that most addicted individuals who choose to quit taking drugs fail to maintain abstinence in the long-term. Relapse is especially likely when recovering addicts encounter risk factors like small "priming" doses of drug, stress, or drug-associated cues and locations. In rodents, these same factors reinstate cocaine seeking after a period of abstinence, and extensive preclinical work has used priming, stress, or cue reinstatement models to uncover brain circuits underlying cocaine reinstatement. Here, we review common rat models of cocaine relapse, and discuss how specific features of each model influence the neural circuits recruited during reinstated drug seeking. To illustrate this point, we highlight the surprisingly specific roles played by ventral pallidum subcircuits in cocaine seeking reinstated by either cocaine-associated cues, or cocaine itself. One goal of such studies is to identify, and eventually to reverse the specific circuit activity that underlies the inability of some humans to control their drug use. Based on preclinical findings, we posit that circuit activity in humans also differs based on the triggers that precipitate craving and relapse, and that associated neural responses could help predict the triggers most likely to elicit relapse in a given person. If so, examining circuit activity could facilitate diagnosis of subgroups of addicted people, allowing individualized treatment based on the most problematic risk factors.


Subject(s)
Brain/pathology , Cocaine-Related Disorders , Drug-Seeking Behavior/physiology , Neural Pathways/pathology , Animals , Cocaine/administration & dosage , Cocaine-Related Disorders/pathology , Cocaine-Related Disorders/physiopathology , Cocaine-Related Disorders/psychology , Disease Models, Animal , Extinction, Psychological , Humans , Recurrence , Rodentia , Self Administration
SELECTION OF CITATIONS
SEARCH DETAIL
...