Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
PLoS One ; 17(5): e0268383, 2022.
Article in English | MEDLINE | ID: mdl-35587486

ABSTRACT

For complex communication signals, it is often difficult to identify the information-bearing elements and their parameters necessary to elicit functional behavior. Consequently, it may be difficult to design stimuli that test how neurons contribute to communicative processing. For túngara frogs (Physalaemus pustulosus), however, previous behavioral testing with numerous stimuli showed that a particular frequency modulated (FM) transition in the male call is required to elicit phonotaxis and vocal responses. Modeled on such behavioral experiments, we used awake in vivo recordings of single units in the midbrain to determine if their excitation was biased to behaviorally important FM parameters. Comparisons of stimulus driven action potentials revealed greatest excitation to the behaviorally important FM transition: a downward FM sweep or step that crosses ~600 Hz. Previous studies using long-duration acoustic exposure found immediate early gene expression in many midbrain neurons to be most sensitive to similar FM. However, those data could not determine if FM coding was accomplished by the population and/or individual neurons. Our data suggest both coding schemes could operate, as 1) individual neurons are more sensitive to the behaviorally significant FM transition and 2) when single unit recordings are analytically combined across cells, the combined code can produce high stimulus discrimination (FM vs. noise driven excitation), approaching that found in behavioral discrimination of call vs. noise.


Subject(s)
Neurons , Sound , Acoustic Stimulation , Action Potentials/physiology , Animals , Anura , Male , Mesencephalon , Neurons/physiology
2.
Integr Comp Biol ; 61(1): 231-239, 2021 07 23.
Article in English | MEDLINE | ID: mdl-33901287

ABSTRACT

Although mate searching behavior in female túngara frogs (Physalaemus pustulosus) is nocturnal and largely mediated by acoustic cues, male signaling includes visual cues produced by the vocal sac. To compensate for these low light conditions, visual sensitivity in females is modulated when they are in a reproductive state, as retinal thresholds are decreased. This study tested whether estradiol (E2) plays a role in this modulation. Female túngara frogs were injected with either human chorionic gonadotropin (hCG) or a combination of hCG and fadrozole. hCG induces a reproductive state and increases retinal sensitivity, while fadrozole is an aromatase inhibitor that blocks hCG-induced E2 synthesis. In an analysis of scotopic electroretinograms (ERGs), hCG treatment lowered the threshold for eliciting a b-wave response, whereas the addition of fadrozole abolished this effect, matching thresholds in non-reproductive saline-injected controls. This suggests that blocking E2 synthesis blocked the hCG-mediated reproductive modulation of retinal sensitivity. By implicating E2 in control of retinal sensitivity, our data add to growing evidence that the targets of gonadal steroid feedback loops include sensory receptor organs, where stimulus sensitivity may be modulated, rather than more central brain nuclei, where modulation may affect mechanisms involved in motivation.


Subject(s)
Anura , Retina/physiology , Sexual Behavior, Animal , Vision, Ocular , Animals , Anura/physiology , Chorionic Gonadotropin/pharmacology , Estradiol/pharmacology , Fadrozole/pharmacology , Female , Male , Reproduction , Retina/drug effects
3.
Mol Ther ; 28(12): 2662-2676, 2020 12 02.
Article in English | MEDLINE | ID: mdl-32818431

ABSTRACT

Usher syndrome is a syndromic form of hereditary hearing impairment that includes sensorineural hearing loss and delayed-onset retinitis pigmentosa (RP). Type 1 Usher syndrome (USH1) is characterized by congenital profound sensorineural hearing impairment and vestibular areflexia, with adolescent-onset RP. Systemic treatment with antisense oligonucleotides (ASOs) targeting the human USH1C c.216G>A splicing mutation in a knockin mouse model of USH1 restores hearing and balance. Herein, we explore the effect of delivering ASOs locally to the ear to treat hearing and vestibular dysfunction associated with Usher syndrome. Three localized delivery strategies were investigated in USH1C mice: inner ear injection, trans-tympanic membrane injection, and topical tympanic membrane application. We demonstrate, for the first time, that ASOs delivered directly to the ear correct Ush1c expression in inner ear tissue, improve cochlear hair cell transduction currents, restore vestibular afferent irregularity, spontaneous firing rate, and sensitivity to head rotation, and successfully recover hearing thresholds and balance behaviors in USH1C mice. We conclude that local delivery of ASOs to the middle and inner ear reach hair cells and can rescue both hearing and balance. These results also demonstrate the therapeutic potential of ASOs to treat hearing and balance deficits associated with Usher syndrome and other ear diseases.


Subject(s)
Cell Cycle Proteins/genetics , Cytoskeletal Proteins/genetics , Ear, Middle/drug effects , Genetic Therapy/methods , Hair Cells, Auditory/drug effects , Mutation , Oligonucleotides, Antisense/administration & dosage , Usher Syndromes/genetics , Usher Syndromes/therapy , Vestibule, Labyrinth/drug effects , Administration, Topical , Animals , Animals, Newborn , Disease Models, Animal , Female , Gene Knock-In Techniques , Hair Cells, Auditory/metabolism , Hearing/drug effects , Injections , Male , Mice , Mice, Inbred C57BL , Tympanic Membrane/drug effects , Vestibule, Labyrinth/metabolism
4.
Front Behav Neurosci ; 13: 293, 2019.
Article in English | MEDLINE | ID: mdl-32076402

ABSTRACT

Visual cues are often a vital part of animal communication and courtship. While a plethora of studies have focused on the role that hormones play in acoustic communication of anurans, relatively few have explored hormonal modulation of vision in these animals. Much of what we do know comes from behavioral studies, which show that a frog's hormonal state can significantly affect both its visual behavior and mating decisions. However, to fully understand how frogs use visual cues to make these mating decisions, we must first understand how their visual system processes these cues, and how hormones affect these processes. To do this, we performed electroretinograms (ERGs) to measure retinal sensitivity of túngara frogs (Physalaemus pustulosus), a neotropical species whose mating behavior includes previously described visual cues. To determine the effect of hormonal state on visual sensitivity, ERGs were recorded under scotopic and photopic conditions in frogs that were either non-reproductive or hormone-treated with human chorionic gonadotropin (hCG) prior to testing. Additionally, measurements of optical anatomy determined how túngara frog eye and retina morphology related to physiological sensitivity. As expected, we found that both sexes display higher visual sensitivity under scotopic conditions compared to photopic conditions. However, hormone injections significantly increased retinal sensitivity of females under scotopic conditions. These results support the hypothesis that hormonal modulation of neural mechanisms, such as those mediating visually guided reproductive behavior in this species, include modulation of the receptor organ: the retina. Thus, our data serve as a starting point for elucidating the mechanism of hormonal modulation of visual sensitivity.

5.
J Comp Neurol ; 526(18): 3045-3057, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30198557

ABSTRACT

Light intensity varies 1 million-fold between night and day, driving the evolution of eye morphology and retinal physiology. Despite extensive research across taxa showing anatomical adaptations to light niches, surprisingly few empirical studies have quantified the relationship between such traits and the physiological sensitivity to light. In this study, we employ a comparative approach in frogs to determine the physiological sensitivity of eyes in two nocturnal (Rana pipiens, Hyla cinerea) and two diurnal species (Oophaga pumilio, Mantella viridis), examining whether differences in retinal thresholds can be explained by ocular and cellular anatomy. Scotopic electroretinogram (ERG) analysis of relative b-wave amplitude reveals 10- to 100-fold greater light sensitivity in nocturnal compared to diurnal frogs. Ocular and cellular optics (aperture, focal length, and rod outer segment dimensions) were assessed via the Land equation to quantify differences in optical sensitivity. Variance in retinal thresholds was overwhelmingly explained by Land equation solutions, which describe the optical sensitivity of single rods. Thus, at the b-wave, stimulus-response thresholds may be unaffected by photoreceptor convergence (which create larger, combined collecting areas). Follow-up experiments were conducted using photopic ERGs, which reflect cone vision. Under these conditions, the relative difference in thresholds was reversed, such that diurnal species were more sensitive than nocturnal species. Thus, photopic data suggest that rod-specific adaptations, not ocular anatomy (e.g., aperture and focal distance), drive scotopic thresholds differences. To the best of our knowledge, these data provide the first quantified relationship between optical and physiological sensitivity in vertebrates active in different light regimes.


Subject(s)
Adaptation, Physiological/physiology , Retina/physiology , Animals , Anura , Circadian Rhythm/physiology
6.
J Assoc Res Otolaryngol ; 19(1): 1-16, 2018 02.
Article in English | MEDLINE | ID: mdl-29027038

ABSTRACT

The absence of functional outer hair cells is a component of several forms of hereditary hearing impairment, including Usher syndrome, the most common cause of concurrent hearing and vision loss. Antisense oligonucleotide (ASO) treatment of mice with the human Usher mutation, Ush1c c.216G>A, corrects gene expression and significantly improves hearing, as measured by auditory-evoked brainstem responses (ABRs), as well as inner and outer hair cell (IHC and OHC) bundle morphology. However, it is not clear whether the improvement in hearing achieved by ASO treatment involves the functional rescue of outer hair cells. Here, we show that Ush1c c.216AA mice lack OHC function as evidenced by the absence of distortion product otoacoustic emissions (DPOAEs) in response to low-, mid-, and high-frequency tone pairs. This OHC deficit is rescued by treatment with an ASO that corrects expression of Ush1c c.216G>A. Interestingly, although rescue of inner hairs cells, as measured by ABR, is achieved by ASO treatment as late as 7 days after birth, rescue of outer hair cells, measured by DPOAE, requires treatment before post-natal day 5. These results suggest that ASO-mediated rescue of both IHC and OHC function is age dependent and that the treatment window is different for the different cell types. The timing of treatment for congenital hearing disorders is of critical importance for the development of drugs such ASO-29 for hearing rescue.


Subject(s)
Hair Cells, Auditory, Outer/drug effects , Oligonucleotides, Antisense/therapeutic use , Usher Syndromes/drug therapy , Age Factors , Animals , Carrier Proteins/genetics , Cell Cycle Proteins , Cytoskeletal Proteins , Evoked Potentials, Auditory, Brain Stem , Hair Cells, Auditory, Outer/physiology , Mice , Mutation , Oligonucleotides, Antisense/pharmacology , Otoacoustic Emissions, Spontaneous , Usher Syndromes/physiopathology
7.
Article in English | MEDLINE | ID: mdl-28197725

ABSTRACT

Perceptually, grouping sounds based on their sources is critical for communication. This is especially true in túngara frog breeding aggregations, where multiple males produce overlapping calls that consist of an FM 'whine' followed by harmonic bursts called 'chucks'. Phonotactic females use at least two cues to group whines and chucks: whine-chuck spatial separation and sequence. Spatial separation is a primitive cue, whereas sequence is schema-based, as chuck production is morphologically constrained to follow whines, meaning that males cannot produce the components simultaneously. When one cue is available, females perceptually group whines and chucks using relative comparisons: components with the smallest spatial separation or those closest to the natural sequence are more likely grouped. By simultaneously varying the temporal sequence and spatial separation of a single whine and two chucks, this study measured between-cue perceptual weighting during a specific grouping task. Results show that whine-chuck spatial separation is a stronger grouping cue than temporal sequence, as grouping is more likely for stimuli with smaller spatial separation and non-natural sequence than those with larger spatial separation and natural sequence. Compared to the schema-based whine-chuck sequence, we propose that spatial cues have less variance, potentially explaining their preferred use when grouping during directional behavioral responses.


Subject(s)
Acoustic Stimulation/methods , Anura/physiology , Auditory Perception/physiology , Cues , Spatial Behavior/physiology , Animals , Female
8.
Article in English | MEDLINE | ID: mdl-25120437

ABSTRACT

Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.


Subject(s)
Auditory Perception/physiology , Functional Laterality/physiology , Mesencephalon/physiology , Sound , Thalamus/physiology , Acoustic Stimulation , Action Potentials/physiology , Analysis of Variance , Animals , Anura , Auditory Pathways/physiology , Electric Stimulation , Mesencephalon/cytology , Neurons/physiology , Wakefulness
9.
Sci Rep ; 3: 1552, 2013.
Article in English | MEDLINE | ID: mdl-23531884

ABSTRACT

Studies of patterned spontaneous activity can elucidate how the organization of neural circuits emerges. Using in vivo two-photon Ca(2+) imaging, we studied spatio-temporal patterns of spontaneous activity in the optic tectum of Xenopus tadpoles. We found rhythmic patterns of global synchronous spontaneous activity between neurons, which depends on visual experience and developmental stage. By contrast, synchronous spontaneous activity between non-neuronal cells is mediated more locally. To understand the source of the neuronal spontaneous activity, input to the tectum was systematically removed. Whereas removing input from the visual or mechanosensory system alone had little effect on patterned spontaneous activity, removing input from both systems drastically altered it. These results suggest that either input is sufficient to maintain the intrinsically generated spontaneous activity and that patterned spontaneous activity results from input from multisensory systems. Thus, the amphibian midbrain differs from the mammalian visual system, whose spontaneous activity is controlled by retinal waves.


Subject(s)
Calcium/physiology , Neurons/physiology , Superior Colliculi/physiology , Aniline Compounds , Animals , Darkness , Fluoresceins , Larva , Neuropil/physiology , Superior Colliculi/growth & development , Synaptic Transmission/physiology , Vision, Ocular , Xenopus laevis
10.
Nat Med ; 19(3): 345-50, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23380860

ABSTRACT

Hearing impairment is the most common sensory disorder, with congenital hearing impairment present in approximately 1 in 1,000 newborns. Hereditary deafness is often mediated by the improper development or degeneration of cochlear hair cells. Until now, it was not known whether such congenital failures could be mitigated by therapeutic intervention. Here we show that hearing and vestibular function can be rescued in a mouse model of human hereditary deafness. An antisense oligonucleotide (ASO) was used to correct defective pre-mRNA splicing of transcripts from the USH1C gene with the c.216G>A mutation, which causes human Usher syndrome, the leading genetic cause of combined deafness and blindness. Treatment of neonatal mice with a single systemic dose of ASO partially corrects Ush1c c.216G>A splicing, increases protein expression, improves stereocilia organization in the cochlea, and rescues cochlear hair cells, vestibular function and low-frequency hearing in mice. These effects were sustained for several months, providing evidence that congenital deafness can be effectively overcome by treatment early in development to correct gene expression and demonstrating the therapeutic potential of ASOs in the treatment of deafness.


Subject(s)
Carrier Proteins/genetics , Oligonucleotides, Antisense/therapeutic use , Usher Syndromes/genetics , Usher Syndromes/therapy , Animals , Cell Cycle Proteins , Cell Line, Tumor , Cochlea/metabolism , Cytoskeletal Proteins , Disease Models, Animal , Evoked Potentials, Auditory, Brain Stem , Genetic Therapy , Hair Cells, Auditory/metabolism , HeLa Cells , Hearing , Humans , Mice , Stereocilia/genetics , Usher Syndromes/metabolism , Vestibule, Labyrinth/physiology
11.
Article in English | MEDLINE | ID: mdl-23344947

ABSTRACT

Neural adaptation, a reduction in the response to a maintained stimulus, is an important mechanism for detecting stimulus change. Contributing to change detection is the fact that adaptation is often stimulus specific: adaptation to a particular stimulus reduces excitability to a specific subset of stimuli, while the ability to respond to other stimuli is unaffected. Phasic cells (e.g., cells responding to stimulus onset) are good candidates for detecting the most rapid changes in natural auditory scenes, as they exhibit fast and complete adaptation to an initial stimulus presentation. We made recordings of single phasic auditory units in the frog midbrain to determine if adaptation was specific to stimulus frequency and ear of input. In response to an instantaneous frequency step in a tone, 28% of phasic cells exhibited frequency specific adaptation based on a relative frequency change (delta-f=±16%). Frequency specific adaptation was not limited to frequency steps, however, as adaptation was also overcome during continuous frequency modulated stimuli and in response to spectral transients interrupting tones. The results suggest that adaptation is separated for peripheral (e.g., frequency) channels. This was tested directly using dichotic stimuli. In 45% of binaural phasic units, adaptation was ear specific: adaptation to stimulation of one ear did not affect responses to stimulation of the other ear. Thus, adaptation exhibited specificity for stimulus frequency and lateralization at the level of the midbrain. This mechanism could be employed to detect rapid stimulus change within and between sound sources in complex acoustic environments.


Subject(s)
Auditory Perception , Ear/innervation , Mesencephalon/physiology , Neuronal Plasticity , Rana pipiens/physiology , Signal Detection, Psychological , Acoustic Stimulation , Adaptation, Physiological , Animals , Auditory Pathways/physiology , Pitch Perception , Time Factors
12.
Article in English | MEDLINE | ID: mdl-23322446

ABSTRACT

The mating calls of male túngara frogs, Physalaemus pustulosus, attract intended (conspecific females) and unintended (eavesdropping predators and parasites) receivers. The calls are complex, having two components: a frequency-modulated "whine" followed by 0-7 harmonic bursts or "chucks". The whine is necessary and sufficient to elicit phonotaxis from females and the chuck enhances call attractiveness when it follows a whine. Although chucks are never made alone, females perceptually bind the whine and chuck when they are spatially separated. We tested whether an unintended receiver with independent evolution of phonotaxis, the frog-eating bat, Trachops cirrhosus, has converged with frogs in its auditory grouping of the call components. In contrast to frogs, bats approached chucks broadcast alone; when the chuck was spatially separated from the whine the bats preferentially approached the whine, and bats were sensitive to whine-chuck temporal sequence. This contrast suggests that although disparate taxa may be selected to respond to the same signals, different evolutionary histories, selective regimes, and neural and cognitive architectures may result in different weighting and grouping of signal components between generalist predators and conspecific mates.


Subject(s)
Auditory Perception , Chiroptera/physiology , Predatory Behavior , Ranidae/physiology , Sexual Behavior, Animal , Signal Detection, Psychological , Vocalization, Animal , Acoustic Stimulation , Animals , Biological Evolution , Female , Male , Sound Spectrography , Time Factors
13.
Nat Commun ; 2: 410, 2011 Aug 02.
Article in English | MEDLINE | ID: mdl-21811239

ABSTRACT

Whereas many studies on mate choice have measured the relative attractiveness of acoustic sexual signals, there is little understanding of another critical process: grouping and assigning the signals to their sources. For female túngara frogs, assigning the distinct components of male calls to the correct source is a challenge because males sing in aggregations, producing overlapping calls that lead to perceptual errors analogous to those of the 'cocktail party problem'. Here we show that for presentation of >2 call components, however, subjects are more likely to group the two components with the smallest relative differences in call parameters, including relative spatial separation (a primitive acoustic cue) and relative similarity to the species-specific call sequence (a schema-based cue). Thus, like humans, the cognitive rules for the perception of auditory groups amidst multiple sound sources include the use of relative comparisons, a flexible strategy for dynamic acoustic environments.


Subject(s)
Ranidae/physiology , Vocalization, Animal , Animals , Female , Male , Ranidae/classification , Sexual Behavior, Animal , Species Specificity
14.
Science ; 333(6043): 751-2, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21817052

ABSTRACT

Psychophysics measures the relationship between a stimulus's physical magnitude and its perceived magnitude. Because decisions are based on perception of stimuli, this relationship is critical to understanding decision-making. We tested whether psychophysical laws explain how female túngara frogs (Physalaemus pustulosus) and frog-eating bats (Trachops cirrhosus) compare male frog calls, and how this imposes selection on call evolution. Although both frogs and bats prefer more elaborate calls, they are less selective as call elaboration increases, because preference is based on stimulus ratios. Thus, as call elaboration increases, both relative attractiveness and relative predation risk decrease because of how receivers perceive and compare stimuli. Our data show that female cognition can limit the evolution of sexual signal elaboration.


Subject(s)
Anura/physiology , Auditory Perception , Biological Evolution , Chiroptera/physiology , Mating Preference, Animal , Vocalization, Animal , Animals , Cognition , Female , Male , Predatory Behavior , Selection, Genetic
15.
Article in English | MEDLINE | ID: mdl-20559640

ABSTRACT

Sensitivity to acoustic amplitude modulation in crickets differs between species and depends on carrier frequency (e.g., calling song vs. bat-ultrasound bands). Using computational tools, we explore how Ca(2+)-dependent mechanisms underlying selective attention can contribute to such differences in amplitude modulation sensitivity. For omega neuron 1 (ON1), selective attention is mediated by Ca(2+)-dependent feedback: [Ca(2+)](internal) increases with excitation, activating a Ca(2+)-dependent after-hyperpolarizing current. We propose that Ca(2+) removal rate and the size of the after-hyperpolarizing current can determine ON1's temporal modulation transfer function (TMTF). This is tested using a conductance-based simulation calibrated to responses in vivo. The model shows that parameter values that simulate responses to single pulses are sufficient in simulating responses to modulated stimuli: no special modulation-sensitive mechanisms are necessary, as high and low-pass portions of the TMTF are due to Ca(2+)-dependent spike frequency adaptation and post-synaptic potential depression, respectively. Furthermore, variance in the two biophysical parameters is sufficient to produce TMTFs of varying bandwidth, shifting amplitude modulation sensitivity like that in different species and in response to different carrier frequencies. Thus, the hypothesis that the size of after-hyperpolarizing current and the rate of Ca(2+) removal can affect amplitude modulation sensitivity is computationally validated.


Subject(s)
Auditory Perception/physiology , Calcium/metabolism , Gryllidae/physiology , Interneurons/physiology , Models, Neurological , Models, Theoretical , Animals
16.
Dev Neurobiol ; 70(4): 253-67, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20095043

ABSTRACT

Usher syndrome is the leading cause of combined deaf-blindness, but the molecular mechanisms underlying the auditory and visual impairment are poorly understood. Usher I is characterized by profound congenital hearing loss, vestibular dysfunction, and progressive retinitis pigmentosa beginning in early adolescence. Using the c.216G>A cryptic splice site mutation in Exon 3 of the USH1C gene found in Acadian Usher I patients in Louisiana, we constructed the first mouse model that develops both deafness and retinal degeneration. The same truncated mRNA transcript found in Usher 1C patients is found in the cochleae and retinas of these knock-in mice. Absent auditory-evoked brainstem responses indicated that the mutant mice are deaf at 1 month of age. Cochlear histology showed disorganized hair cell rows, abnormal bundles, and loss of both inner and outer hair cells in the middle turns and at the base. Retinal dysfunction as evident by an abnormal electroretinogram was seen as early as 1 month of age, with progressive loss of rod photoreceptors between 6 and 12 months of age. This knock-in mouse reproduces the dual sensory loss of human Usher I, providing a novel resource to study the disease mechanism and the development of therapies.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Deafness/physiopathology , Disease Models, Animal , Retinal Degeneration/physiopathology , Usher Syndromes/physiopathology , Adaptor Proteins, Signal Transducing/metabolism , Aging , Animals , Cell Cycle Proteins , Cochlea/pathology , Cochlea/physiopathology , Cochlea/ultrastructure , Cytoskeletal Proteins , Deafness/pathology , Electroretinography , Evoked Potentials, Auditory, Brain Stem , Exons , Gene Knock-In Techniques , Hair Cells, Auditory/pathology , Hair Cells, Auditory/physiology , Louisiana , Mice , Mice, Transgenic , Mutation, Missense , RNA Splice Sites , RNA, Messenger/metabolism , Retina/pathology , Retina/physiopathology , Retinal Degeneration/pathology , Retinal Rod Photoreceptor Cells/pathology , Retinal Rod Photoreceptor Cells/physiology , Usher Syndromes/pathology
17.
J Neurosci ; 26(48): 12526-36, 2006 Nov 29.
Article in English | MEDLINE | ID: mdl-17135414

ABSTRACT

The auditory hair cell resting potential is critical for proper translation of acoustic signals to the CNS, because it determines their filtering properties, their ability to respond to stimuli of both polarities, and, because the hair cell drives afferent firing rates, the resting potential dictates spontaneous transmitter release. In turtle auditory hair cells, the filtering properties are established by the interactions between BK calcium-activated potassium channels and an L-type calcium channel (electrical resonance). However, both theoretical and in vitro recordings indicate that a third conductance is required to set the resting potential to a point on the I(Ca) and I(BK) activation curves in which filtering is optimized like that found in vivo. Present data elucidate a novel mechanism, likely universal among hair cells, in which mechanoelectric transduction (MET) and its calcium-dependent adaptation provide the depolarizing current to establish the hair cell resting potential. First, mechanical block of the MET current hyperpolarized the membrane potential, resulting in broadband asymmetrical resonance. Second, altering steady-state adaptation by altering the [Ca2+] bathing the hair bundle changed the MET current at rest, the magnitude of which resulted in membrane potential changes that encompassed the best resonant voltage. The Ca2+ sensitivity of adaptation allowed for the first physiological estimate of endolymphatic Ca2+ near the MET channel (56 +/- 11 microM), a value similar to bulk endolymph levels. These effects of MET current on resting potential were independently confirmed using a theoretical model of electrical resonance that included the steady-state MET conductance.


Subject(s)
Adaptation, Physiological/physiology , Calcium/physiology , Endolymph/physiology , Hair Cells, Auditory/physiology , Mechanotransduction, Cellular/physiology , Membrane Potentials/physiology , Animals , Mechanoreceptors/physiology , Turtles
18.
Neuroreport ; 16(9): 943-7, 2005 Jun 21.
Article in English | MEDLINE | ID: mdl-15931066

ABSTRACT

In voltage-clamp, uncompensated series resistance results in steady-state voltage errors that scale with the amplitude of the elicited current and are often correctable offline. However, while investigating mechanoelectric transduction currents at hair cells' resting potential, voltage-gated calcium channels and calcium-activated potassium channels (BK) were activated in voltage-clamp by displacing the sensory hair bundle. This resulted from steady-state voltage errors (<1.5 mV) induced by series resistance changing the holding potential. Thus, uncompensated series resistance, interacting with an elicited current, resulted in a voltage error that could induce the erroneous activation of other currents. This error is not correctable offline. Recognizing this type of error is critical when investigating multiple voltage-dependent conductances with steep voltage dependence.


Subject(s)
Calcium Channels/physiology , Hair Cells, Auditory/physiology , Membrane Potentials/physiology , Patch-Clamp Techniques/methods , Potassium Channels, Calcium-Activated/physiology , Animals , Calcium/pharmacology , Dose-Response Relationship, Drug , In Vitro Techniques , Membrane Potentials/drug effects , Physical Stimulation/methods , Time Factors , Turtles
19.
Microsc Res Tech ; 63(6): 375-87, 2004 Apr 15.
Article in English | MEDLINE | ID: mdl-15252879

ABSTRACT

Psychophysics has much to offer the study of insect hearing. Not only is there a rich set of experimental methods to apply, there is a large body of experimental work on vertebrate hearing that can suggest topics for investigation and provide material for cross-species comparisons. We present an overview of the methods of psychophysics, followed by specific examples of their use in insects. Topics covered include intensity discrimination, frequency analysis and discrimination, temporal integration and acuity, and localization. We conclude by pointing out additional areas of research suggested by the reviewed work and areas in which a psychophysical approach would be useful.


Subject(s)
Auditory Perception/physiology , Hearing/physiology , Pitch Discrimination/physiology , Animals , Insecta , Psychophysics
20.
Hear Res ; 193(1-2): 121-33, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15219327

ABSTRACT

This study characterizes aspects of the anatomy and physiology of auditory receptors and certain interneurons in the cricket Gryllus rubens. We identified an 'L'-shaped ascending interneuron tuned to frequencies > 15 kHz (57 dB SPL threshold at 20 kHz). Also identified were two intrasegmental 'omega'-shaped interneurons that were broadly tuned to 3-65 kHz, with best sensitivity to frequencies of the male calling song (5 kHz, 52 dB SPL). The temporal sensitivity of units excited by calling song frequencies were measured using sinusoidally amplitude modulated stimuli that varied in both modulation rate and depth, parameters that vary with song propagation distance and the number of singing males. Omega cells responded like low-pass filters with a time constant of 42 ms. In contrast, receptors significantly coded modulation rates up to the maximum rate presented (85 Hz). Whereas omegas required approximately 65% modulation depth at 45 Hz (calling song AM) to elicit significant synchrony coding, receptors tolerated a approximately 50% reduction in modulation depth up to 85 Hz. These results suggest that omega cells in G. rubens might not play a role in detecting song modulation per se at increased distances from a singing male.


Subject(s)
Auditory Pathways/physiology , Gryllidae/physiology , Neurons, Afferent/physiology , Time Perception/physiology , Vocalization, Animal , Acoustic Stimulation/methods , Animals , Auditory Pathways/cytology , Auditory Threshold , Female , Interneurons/physiology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...