Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(3): 034903, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37012811

ABSTRACT

Diffusion is one of the most ubiquitous transport phenomena in nature. Experimentally, it can be tracked by following point spreading in space and time. Here, we introduce a spatiotemporal pump-probe microscopy technique that exploits the residual spatial temperature profile obtained through the transient reflectivity when probe pulses arrive before pump pulses. This corresponds to an effective pump-probe time delay of 13 ns, determined by the repetition rate of our laser system (76 MHz). This pre-time-zero technique enables probing the diffusion of long-lived excitations created by previous pump pulses with nanometer accuracy and is particularly powerful for following in-plane heat diffusion in thin films. The particular advantage of this technique is that it enables quantifying thermal transport without requiring any material input parameters or strong heating. We demonstrate the direct determination of the thermal diffusivities of films with a thickness of around 15 nm, consisting of the layered materials MoSe2 (0.18 cm2/s), WSe2 (0.20 cm2/s), MoS2 (0.35 cm2/s), and WS2 (0.59 cm2/s). This technique paves the way for observing nanoscale thermal transport phenomena and tracking diffusion of a broad range of species.

2.
Adv Mater ; 34(10): e2108352, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34981868

ABSTRACT

Understanding heat flow in layered transition metal dichalcogenide (TMD) crystals is crucial for applications exploiting these materials. Despite significant efforts, several basic thermal transport properties of TMDs are currently not well understood, in particular how transport is affected by material thickness and the material's environment. This combined experimental-theoretical study establishes a unifying physical picture of the intrinsic lattice thermal conductivity of the representative TMD MoSe2 . Thermal conductivity measurements using Raman thermometry on a large set of clean, crystalline, suspended crystals with systematically varied thickness are combined with ab initio simulations with phonons at finite temperature. The results show that phonon dispersions and lifetimes change strongly with thickness, yet the thinnest TMD films exhibit an in-plane thermal conductivity that is only marginally smaller than that of bulk crystals. This is the result of compensating phonon contributions, in particular heat-carrying modes around ≈0.1 THz in (sub)nanometer thin films, with a surprisingly long mean free path of several micrometers. This behavior arises directly from the layered nature of the material. Furthermore, out-of-plane heat dissipation to air molecules is remarkably efficient, in particular for the thinnest crystals, increasing the apparent thermal conductivity of monolayer MoSe2 by an order of magnitude. These results are crucial for the design of (flexible) TMD-based (opto-)electronic applications.

3.
J Phys Condens Matter ; 31(6): 065702, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30524117

ABSTRACT

We study the electronic transport coefficients and the thermoelectric figure of merit ZT in [Formula: see text]-doped Mg3Sb2 based on density-functional electronic structure and Bloch-Boltzmann transport theory with an energy- and temperature-dependent relaxation time. Both the lattice and electronic thermal conductivities affect the final ZT significantly, hence we include the lattice thermal conductivity calculated ab initio. Where applicable, our results are in good agreement with existing experiments, thanks to the treatment of lattice thermal conductivity and the improved description of electronic scattering. ZT increases monotonically in our [Formula: see text] range (300-700 K), reaching a value of 1.6 at 700 K; it peaks as a function of doping at about [Formula: see text] cm-3. At this doping, ZT [Formula: see text] 1 for [Formula: see text] K.

SELECTION OF CITATIONS
SEARCH DETAIL
...