Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Neurobiol Stress ; 29: 100603, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38234394

ABSTRACT

Chronic stress and alcohol (ethanol) use are highly interrelated and can change an individual's behavior through molecular adaptations that do not change the DNA sequence, but instead change gene expression. A recent wealth of research has found that these nongenomic changes can be transmitted across generations, which could partially account for the "missing heritability" observed in genome-wide association studies of alcohol use disorder and other stress-related neuropsychiatric disorders. In this review, we summarize the molecular and behavioral outcomes of nongenomic inheritance of chronic stress and ethanol exposure and the germline mechanisms that could give rise to this heritability. In doing so, we outline the need for further research to: (1) Investigate individual germline mechanisms of paternal, maternal, and biparental nongenomic chronic stress- and ethanol-related inheritance; (2) Synthesize and dissect cross-generational chronic stress and ethanol exposure; (3) Determine cross-generational molecular outcomes of preconception ethanol exposure that contribute to alcohol-related disease risk, using cancer as an example. A detailed understanding of the cross-generational nongenomic effects of stress and/or ethanol will yield novel insight into the impact of ancestral perturbations on disease risk across generations and uncover actionable targets to improve human health.

2.
J Pain ; 24(7): 1262-1274, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36868488

ABSTRACT

Approximately half of patients with alcohol use disorder report pain and this can be severe during withdrawal. Many questions remain regarding the importance of biological sex, alcohol exposure paradigm, and stimulus modality to the severity of alcohol withdrawal-induced hyperalgesia. To examine the impact of sex and blood alcohol concentration on the time course of the development of mechanical and heat hyperalgesia, we characterized a mouse model of chronic alcohol withdrawal-induced pain in the presence or absence the alcohol dehydrogenase inhibitor, pyrazole. Male and female C57BL/6J mice underwent chronic intermittent ethanol vapor ± pyrazole exposure for 4 weeks, 4 d/wk to induce ethanol dependence. Hind paw sensitivity to the plantar application of mechanical (von Frey filaments) and radiant heat stimuli were measured during weekly observations at 1, 3, 5, 7, 24, and 48 hours after cessation of ethanol exposure. In the presence of pyrazole, males developed mechanical hyperalgesia after the first week of chronic intermittent ethanol vapor exposure, peaking at 48 hours after cessation of ethanol. By contrast, females did not develop mechanical hyperalgesia until the fourth week; this also required pyrazole and did not peak until 48 hours. Heat hyperalgesia was consistently observed only in females exposed to ethanol and pyrazole; this developed after the first weekly session and peaked at 1 hour. We conclude that Chronic alcohol withdrawal-induced pain develops in a sex-, time-, and blood alcohol concentration-dependent manner in C57BL/6J mice. PERSPECTIVE: Alcohol withdrawal-induced pain is a debilitating condition in individuals with AUD. Our study found mice experience alcohol withdrawal-induced pain in a sex and time course specific manor. These findings will aid in elucidating mechanisms of chronic pain and AUD and will help individuals remain abstinent from alcohol.


Subject(s)
Alcoholism , Substance Withdrawal Syndrome , Mice , Male , Female , Animals , Hyperalgesia/chemically induced , Ethanol/toxicity , Blood Alcohol Content , Hot Temperature , Mice, Inbred C57BL , Pain , Pyrazoles/pharmacology
3.
Alcohol ; 105: 9-24, 2022 12.
Article in English | MEDLINE | ID: mdl-36055466

ABSTRACT

Extracellular vesicles (EVs) are important players in normal biological function and disease pathogenesis. Of the many biomolecules packaged into EVs, coding and noncoding RNA transcripts are of particular interest for their ability to significantly alter cellular and molecular processes. Here we investigate how chronic ethanol exposure impacts EV RNA cargo and the functional outcomes of these changes. Following chronic intermittent ethanol (CIE) vapor exposure, EVs were isolated from male and female C57BL/6J mouse brain. Total RNA from EVs was analyzed by lncRNA/mRNA microarray to survey changes in RNA cargo following vapor exposure. Differential expression analysis of microarray data revealed a number of lncRNA and mRNA types differentially expressed in CIE compared to control EVs. Weighted gene co-expression network analysis identified multiple male and female specific modules related to neuroinflammation, cell death, demyelination, and synapse organization. To functionally test these changes, whole-cell voltage-clamp recordings were used to assess synaptic transmission. Incubation of nucleus accumbens brain slices with EVs led to a reduction in spontaneous excitatory postsynaptic current amplitude, although no changes in synaptic transmission were observed between control and CIE EV administration. These results indicate that CIE vapor exposure significantly changes the RNA cargo of brain-derived EVs, which have the ability to impact neuronal function.


Subject(s)
Brain , Ethanol , Extracellular Vesicles , RNA, Long Noncoding , Animals , Female , Male , Mice , Brain/drug effects , Ethanol/adverse effects , Mice, Inbred C57BL , RNA, Messenger
4.
Front Mol Neurosci ; 15: 905328, 2022.
Article in English | MEDLINE | ID: mdl-35813067

ABSTRACT

Psychiatric and neurological disorders are influenced by an undetermined number of genes and molecular pathways that may differ among afflicted individuals. Functionally testing and characterizing biological systems is essential to discovering the interrelationship among candidate genes and understanding the neurobiology of behavior. Recent advancements in genetic, genomic, and behavioral approaches are revolutionizing modern neuroscience. Although these tools are often used separately for independent experiments, combining these areas of research will provide a viable avenue for multidimensional studies on the brain. Herein we will briefly review some of the available tools that have been developed for characterizing novel cellular and animal models of human disease. A major challenge will be openly sharing resources and datasets to effectively integrate seemingly disparate types of information and how these systems impact human disorders. However, as these emerging technologies continue to be developed and adopted by the scientific community, they will bring about unprecedented opportunities in our understanding of molecular neuroscience and behavior.

5.
Brain Sci ; 11(9)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34573170

ABSTRACT

Alcohol dependence is associated with adverse consequences of alcohol (ethanol) use and is evident in most severe cases of alcohol use disorder (AUD). The central nucleus of the amygdala (CeA) plays a critical role in the development of alcohol dependence and escalation of alcohol consumption in dependent subjects. Molecular mechanisms underlying the CeA-driven behavioral changes are not well understood. Here, we examined the effects of alcohol on global gene expression in the CeA using a chronic intermittent ethanol (CIE) vapor model in rats and RNA sequencing (RNA-Seq). The CIE procedure resulted in robust changes in CeA gene expression during intoxication, as the number of differentially expressed genes (DEGs) was significantly greater than those expected by chance. Over-representation analysis of cell types, functional groups and molecular pathways revealed biological categories potentially important for the development of alcohol dependence in our model. Genes specific for astrocytes, myelinating oligodendrocytes, and endothelial cells were over-represented in the DEG category, suggesting that these cell types were particularly affected by the CIE procedure. The majority of the over-represented functional groups and molecular pathways were directly related to the functions of glial and endothelial cells, including extracellular matrix (ECM) organization, myelination, and the regulation of innate immune response. A coordinated regulation of several ECM metalloproteinases (e.g., Mmp2; Mmp14), their substrates (e.g., multiple collagen genes and myelin basic protein; Mbp), and a metalloproteinase inhibitor, Reck, suggests a specific mechanism for ECM re-organization in response to chronic alcohol, which may modulate neuronal activity and result in behavioral changes, such as an escalation of alcohol drinking. Our results highlight the importance of glial and endothelial cells in the effects of chronic alcohol exposure on the CeA, and demonstrate further insight into the molecular mechanisms of alcohol dependence in rats. These molecular targets may be used in future studies to develop therapeutics to treat AUD.

6.
Int Rev Neurobiol ; 156: 63-86, 2021.
Article in English | MEDLINE | ID: mdl-33461665

ABSTRACT

Alcohol use disorder is a chronic debilitated condition adversely affecting the lives of millions of individuals throughout the modern world. Individuals suffering from an alcohol use disorder diagnosis frequently have serious cooccurring conditions, which often further exacerbates problematic drinking behavior. Comprehending the biochemical processes underlying the progression and perpetuation of disease is essential for mitigating maladaptive behavior in order to restore both physiological and psychological health. The range of cellular and biological systems contributing to, and affected by, alcohol use disorder and other comorbid disorders necessitates a fundamental grasp of intricate functional relationships that govern molecular biology. Epigenetic factors are recognized as essential mediators of cellular behavior, orchestrating a symphony of gene expression changes within multicellular environments that are ultimately responsible for directing human behavior. Understanding the epigenetic and transcriptional regulatory mechanisms involved in the pathogenesis of disease is important for improving available pharmacotherapies and reducing the incidence of alcohol abuse and cooccurring conditions.


Subject(s)
Alcoholism , Behavior, Addictive , Epigenesis, Genetic , Gene Expression Regulation , Alcoholism/genetics , Behavior, Addictive/genetics , Humans
7.
Mol Psychiatry ; 26(4): 1142-1151, 2021 04.
Article in English | MEDLINE | ID: mdl-31477794

ABSTRACT

Genome-wide association studies (GWAS) of complex traits, such as alcohol use disorders (AUD), usually identify variants in non-coding regions and cannot by themselves distinguish whether the associated variants are functional or in linkage disequilibrium with the functional variants. Transcriptome studies can identify genes whose expression differs between alcoholics and controls. To test which variants associated with AUD may cause expression differences, we integrated data from deep RNA-seq and GWAS of four postmortem brain regions from 30 subjects with AUD and 30 controls to analyze allele-specific expression (ASE). We identified 88 genes with differential ASE in subjects with AUD compared to controls. Next, to test one potential mechanism contributing to the differential ASE, we analyzed single nucleotide polymorphisms (SNPs) in the 3' untranslated regions (3'UTR) of these genes. Of the 88 genes with differential ASE, 61 genes contained 437 SNPs in the 3'UTR with at least one heterozygote among the subjects studied. Using a modified PASSPORT-seq (parallel assessment of polymorphisms in miRNA target-sites by sequencing) assay, we identified 25 SNPs that affected RNA levels in a consistent manner in two neuroblastoma cell lines, SH-SY5Y and SK-N-BE(2). Many of these SNPs are in binding sites of miRNAs and RNA-binding proteins, indicating that these SNPs are likely causal variants of AUD-associated differential ASE. In sum, we demonstrate that a combination of computational and experimental approaches provides a powerful strategy to uncover functionally relevant variants associated with the risk for AUD.


Subject(s)
Alcoholism , Genome-Wide Association Study , 3' Untranslated Regions/genetics , Alcoholism/genetics , Alleles , Genetic Predisposition to Disease/genetics , Humans , Polymorphism, Single Nucleotide/genetics
8.
Brain Sci ; 10(5)2020 May 02.
Article in English | MEDLINE | ID: mdl-32370184

ABSTRACT

Chronic stress is a known contributing factor to the development of drug and alcohol addiction. Animal models have previously shown that repeated forced swim stress promotes escalated alcohol consumption in dependent animals. To investigate the underlying molecular adaptations associated with stress and chronic alcohol exposure, RNA-sequencing and bioinformatics analyses were conducted on the prefrontal cortex (CTX) of male C57BL/6J mice that were behaviorally tested for either non-dependent alcohol consumption (CTL), chronic intermittent ethanol (CIE) vapor dependent alcohol consumption, repeated bouts of forced swim stress alone (FSS), and chronic intermittent ethanol with forced swim stress (CIE + FSS). Brain tissue from each group was collected at 0-h, 72-h, and 168-h following the final test to determine long-lasting molecular changes associated with maladaptive behavior. Our results demonstrate unique temporal patterns and persistent changes in coordinately regulated gene expression systems with respect to the tested behavioral group. For example, increased expression of genes involved in "transmitter-gated ion channel activity" was only determined for CIE + FSS. Overall, our results provide a summary of transcriptomic adaptations across time within the CTX that are relevant to understanding the neurobiology of chronic alcohol exposure and stress.

9.
Brain Sci ; 10(2)2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32085427

ABSTRACT

Binge drinking is a dangerous pattern of behavior. We tested whether chronically manipulating nucleus accumbens (NAc) activity (via clozapine-N-oxide (CNO) and Designer Receptors Exclusively Activated by Designer Drugs (DREADD)) could produce lasting effects on ethanol binge-like drinking in mice selectively bred to drink to intoxication. We found chronically increasing NAc activity (4 weeks, via CNO and the excitatory DREADD, hM3Dq) decreased binge-like drinking, but did not observe CNO-induced changes in drinking with the inhibitory DREADD, hM4Di. The CNO/hM3Dq-induced reduction in ethanol drinking persisted for at least one week, suggesting adaptive neuroplasticity via transcriptional and epigenetic mechanisms. Therefore, we defined this plasticity at the morphological and transcriptomic levels. We found that chronic binge drinking (6 weeks) altered neuronal morphology in the NAc, an effect that was ameliorated with CNO/hM3Dq. Moreover, we detected significant changes in expression of several plasticity-related genes with binge drinking that were ameliorated with CNO treatment (e.g., Hdac4). Lastly, we found that LMK235, an HDAC4/5 inhibitor, reduced binge-like drinking. Thus, we were able to target specific molecular pathways using pharmacology to mimic the behavioral effects of DREADDs.

10.
Front Mol Neurosci ; 12: 197, 2019.
Article in English | MEDLINE | ID: mdl-31456662

ABSTRACT

Despite recent extensive genomic and genetic studies on behavioral responses to ethanol, relatively few new therapeutic targets for the treatment of alcohol use disorder have been validated. Here, we describe a cross-species genomic approach focused on identifying gene networks associated with chronic ethanol consumption. To identify brain mechanisms underlying a chronic ethanol consumption phenotype highly relevant to human alcohol use disorder, and to elucidate potential future therapeutic targets, we conducted a genomic study in a non-human primate model of chronic open-access ethanol consumption. Microarray analysis of RNA expression in anterior cingulate and subgenual cortices from rhesus macaques was performed across multiple cohorts of animals. Gene networks correlating with ethanol consumption or showing enrichment for ethanol-regulated genes were identified, as were major ethanol-related hub genes within these networks. A subsequent consensus module analysis was used to co-analyze monkey data with expression data from a chronic intermittent ethanol vapor-exposure and consumption model in C57BL/6J mice. Ethanol-related gene networks conserved between primates and rodents were enriched for genes involved in discrete biological functions, including; myelination, synaptic transmission, chromatin modification, Golgi apparatus function, translation, cellular respiration, and RNA processing. The myelin-related network, in particular, showed strong correlations with ethanol consumption behavior and displayed marked network reorganization between control and ethanol-drinking animals. Further bioinformatics analysis revealed that these networks also showed highly significant overlap with other ethanol-regulated gene sets. Altogether, these studies provide robust primate and rodent cross-species validation of gene networks associated with chronic ethanol consumption. Our results also suggest potential novel focal points for future therapeutic interventions in alcohol use disorder.

11.
Transl Psychiatry ; 9(1): 89, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30765688

ABSTRACT

Alcohol exposure triggers changes in gene expression and biological pathways in human brain. We explored alterations in gene expression in the Pre-Frontal Cortex (PFC) of 65 alcoholics and 73 controls of European descent, and identified 129 genes that showed altered expression (FDR < 0.05) in subjects with alcohol dependence. Differentially expressed genes were enriched for pathways related to interferon signaling and Growth Arrest and DNA Damage-inducible 45 (GADD45) signaling. A coexpression module (thistle2) identified by weighted gene co-expression network analysis (WGCNA) was significantly correlated with alcohol dependence, alcohol consumption, and AUDIT scores. Genes in the thistle2 module were enriched with genes related to calcium signaling pathways and showed significant downregulation of these pathways, as well as enrichment for biological processes related to nicotine response and opioid signaling. A second module (brown4) showed significant upregulation of pathways related to immune signaling. Expression quantitative trait loci (eQTLs) for genes in the brown4 module were also enriched for genetic associations with alcohol dependence and alcohol consumption in large genome-wide studies included in the Psychiatric Genetic Consortium and the UK Biobank's alcohol consumption dataset. By leveraging multi-omics data, this transcriptome analysis has identified genes and biological pathways that could provide insight for identifying therapeutic targets for alcohol dependence.


Subject(s)
Alcohol Drinking/genetics , Alcoholism/genetics , Gene Expression Regulation , Transcriptome , Adult , Aged , Alcohol Drinking/metabolism , Alcoholism/metabolism , Autopsy , Case-Control Studies , Ethanol/metabolism , Female , Gene Expression Profiling , Gene Regulatory Networks , Genome-Wide Association Study , Humans , Male , Middle Aged , New South Wales , Prefrontal Cortex/metabolism , Quantitative Trait Loci
12.
Addict Biol ; 24(2): 275-289, 2019 03.
Article in English | MEDLINE | ID: mdl-29316088

ABSTRACT

Alcohol use disorder (AUD) is a heritable complex behavior. Due to the highly polygenic nature of AUD, identifying genetic variants that comprise this heritable variation has proved to be challenging. With the exception of functional variants in alcohol metabolizing genes (e.g. ADH1B and ALDH2), few other candidate loci have been confidently linked to AUD. Genome-wide association studies (GWAS) of AUD and other alcohol-related phenotypes have either produced few hits with genome-wide significance or have failed to replicate on further study. These issues reinforce the complex nature of the genetic underpinnings for AUD and suggest that both GWAS studies with larger samples and additional analysis approaches that better harness the nominally significant loci in existing GWAS are needed. Here, we review approaches of interest in the post-GWAS era, including in silico functional analyses; functional partitioning of single nucleotide polymorphism heritability; aggregation of signal into genes and gene networks; and validation of identified loci, genes and gene networks in postmortem brain tissue and across species. These integrative approaches hold promise to illuminate our understanding of the biological basis of AUD; however, we recognize that the main challenge continues to be the extremely polygenic nature of AUD, which necessitates large samples to identify multiple loci associated with AUD liability.


Subject(s)
Alcoholism/genetics , Multifactorial Inheritance/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Neuroimaging , Polymorphism, Single Nucleotide/genetics
13.
Alcohol ; 74: 65-71, 2019 02.
Article in English | MEDLINE | ID: mdl-30144960

ABSTRACT

Alcohol Use Disorder (AUD) is a multifarious psychiatric condition resulting from complex relationships between genetics, gene expression, neuroadaptations, and environmental influences. Understanding these complex relationships is essential to uncovering the mechanisms involved in the development and progression of AUD, with the ultimate goal of devising effective behavioral and therapeutic interventions. Technical advances in the fields of omics-based research and bioinformatics have yielded insights into gene interactions, biological networks, and cellular responses across humans and animal models. This review highlights several of the newly developed sequencing methodologies and resultant discoveries in neuroscience, as well as the importance of a multi-faceted and integrative approach for determining causal factors in AUD.


Subject(s)
Alcoholism/etiology , Computational Biology , Alcoholism/drug therapy , Animals , Humans , Sequence Analysis, RNA , Single-Cell Analysis
14.
Neuropharmacology ; 146: 289-299, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30419244

ABSTRACT

Alcohol use disorder (AUD) and major depressive disorder (MDD) are prevalent, debilitating, and highly comorbid disorders. The molecular changes that underlie their comorbidity are beginning to emerge. For example, recent evidence showed that acute ethanol exposure produces rapid antidepressant-like biochemical and behavioral responses. Both ethanol and fast-acting antidepressants block N-methyl-D-aspartate receptor (NMDAR) activity, leading to synaptic changes and long-lasting antidepressant-like behavioral effects. We used RNA sequencing to analyze changes in the synaptic transcriptome after acute treatment with ethanol or the NMDAR antagonist, Ro 25-6981. Ethanol and Ro 25-6981 induced differential, independent changes in gene expression. In contrast with gene-level expression, ethanol and Ro 25-6981 produced overlapping changes in exons, as measured by analysis of differentially expressed exons (DEEs). A prominent overlap in genes with DEEs indicated that changes in exon usage were important for both ethanol and Ro 25-6981 action. Structural modeling provided evidence that ethanol-induced exon expression in the NMDAR1 amino-terminal domain could induce conformational changes and thus alter NMDAR function. These findings suggest that the rapid antidepressant effects of ethanol and NMDAR antagonists reported previously may depend on synaptic exon usage rather than gene expression.


Subject(s)
Alcoholism/genetics , Depressive Disorder, Major/genetics , Exons/drug effects , Exons/genetics , Gene Expression/drug effects , Alternative Splicing/drug effects , Alternative Splicing/genetics , Animals , Antidepressive Agents/pharmacology , Comorbidity , Ethanol/pharmacology , Hippocampus/drug effects , Male , Mice, Inbred C57BL , Models, Animal , Phenols/pharmacology , Piperidines/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, Neurotransmitter , Transcriptome
15.
Alcohol ; 72: 19-31, 2018 11.
Article in English | MEDLINE | ID: mdl-30213503

ABSTRACT

This review summarizes the proceedings of a symposium presented at the "Alcoholism and Stress: A Framework for Future Treatment Strategies" conference held in Volterra, Italy on May 9-12, 2017. Psychiatric diseases, including alcohol-use disorders (AUDs), are influenced through complex interactions of genes, neurobiological pathways, and environmental influences. A better understanding of the common neurobiological mechanisms underlying an AUD necessitates an integrative approach, involving a systematic assessment of diverse species and phenotype measures. As part of the World Congress on Stress and Alcoholism, this symposium provided a detailed account of current strategies to identify mechanisms underlying the development and progression of AUDs. Dr. Sean Farris discussed the integration and organization of transcriptome and postmortem human brain data to identify brain regional- and cell type-specific differences related to excessive alcohol consumption that are conserved across species. Dr. Brien Riley presented the results of a genome-wide association study of DSM-IV alcohol dependence; although replication of genetic associations with alcohol phenotypes in humans remains challenging, model organism studies show that COL6A3, KLF12, and RYR3 affect behavioral responses to ethanol, and provide substantial evidence for their role in human alcohol-related traits. Dr. Rob Williams expanded upon the systematic characterization of extensive genetic-genomic resources for quantifying and clarifying phenotypes across species that are relevant to precision medicine in human disease. The symposium concluded with Dr. Robert Hitzemann's description of transcriptome studies in a mouse model selectively bred for high alcohol ("binge-like") consumption and a non-human primate model of long-term alcohol consumption. Together, the different components of this session provided an overview of systems-based approaches that are pioneering the experimental prioritization and validation of novel genes and gene networks linked with a range of behavioral phenotypes associated with stress and AUDs.


Subject(s)
Alcohol Drinking/genetics , Alcohol-Related Disorders/genetics , Animals , Collagen Type VI/genetics , Disease Models, Animal , Gene Expression , Gene Expression Profiling , Genome-Wide Association Study , Humans , Kruppel-Like Transcription Factors/genetics , Macaca , Mice , Ryanodine Receptor Calcium Release Channel/genetics
16.
Neuropsychopharmacology ; 43(13): 2521-2531, 2018 12.
Article in English | MEDLINE | ID: mdl-30188517

ABSTRACT

Understanding how ethanol actions on brain signal transduction and gene expression lead to excessive consumption and addiction could identify new treatments for alcohol dependence. We previously identified glycogen synthase kinase 3-beta (Gsk3b) as a member of a highly ethanol-responsive gene network in mouse medial prefrontal cortex (mPFC). Gsk3b has been implicated in dendritic function, synaptic plasticity and behavioral responses to other drugs of abuse. Here, we investigate Gsk3b in rodent models of ethanol consumption and as a risk factor for human alcohol dependence. Stereotactic viral vector gene delivery overexpression of Gsk3b in mouse mPFC increased 2-bottle choice ethanol consumption, which was blocked by lithium, a known GSK3B inhibitor. Further, Gsk3b overexpression increased anxiety-like behavior following abstinence from ethanol. Protein or mRNA expression studies following Gsk3b over-expression identified synaptojanin 2, brain-derived neurotrophic factor and the neuropeptide Y Y5 receptor as potential downstream factors altering ethanol behaviors. Rat operant studies showed that selective pharmacologic inhibition of GSK3B with TDZD-8 dose-dependently decreased motivation to self-administer ethanol and sucrose and selectively blocked ethanol relapse-like behavior. In set-based and gene-wise genetic association analysis, a GSK3b-centric gene expression network had significant genetic associations, at a gene and network level, with risk for alcohol dependence in humans. These mutually reinforcing cross-species findings implicate GSK3B in neurobiological mechanisms controlling ethanol consumption, and as both a potential risk factor and therapeutic target for alcohol dependence.


Subject(s)
Alcohol Drinking/genetics , Alcohol Drinking/metabolism , Alcoholism/enzymology , Alcoholism/genetics , Glycogen Synthase Kinase 3 beta/biosynthesis , Glycogen Synthase Kinase 3 beta/genetics , Alcohol Abstinence/psychology , Alcohol Drinking/psychology , Alcoholism/psychology , Animals , Dose-Response Relationship, Drug , Female , Humans , Male , Mice , Mice, Inbred C57BL , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Rats , Rats, Wistar , Risk Factors , Self Administration , Species Specificity , Thiadiazoles/pharmacology , Thiadiazoles/therapeutic use
17.
Pharmacogenomics J ; 18(4): 578-589, 2018 07.
Article in English | MEDLINE | ID: mdl-29305589

ABSTRACT

Astrocytes play critical roles in central nervous system (CNS) homeostasis and are implicated in the pathogenesis of neurological and psychiatric conditions, including drug dependence. Little is known about the effects of chronic ethanol consumption on astrocyte gene expression. To address this gap in knowledge, we performed transcriptome-wide RNA sequencing of astrocytes isolated from the prefrontal cortex (PFC) of mice following chronic ethanol consumption. Differential expression analysis revealed ethanol-induced changes unique to astrocytes that were not identified in total homogenate preparations. Astrocyte-specific gene expression revealed calcium-related signaling and regulation of extracellular matrix genes as responses to chronic ethanol use. These findings emphasize the importance of investigating expression changes in specific cellular populations to define molecular consequences of chronic ethanol consumption in mammalian brain.


Subject(s)
Alcohol Drinking/genetics , Astrocytes/drug effects , Ethanol/toxicity , Transcriptome/genetics , Alcohol Drinking/physiopathology , Animals , Astrocytes/metabolism , Astrocytes/pathology , Gene Expression Regulation/drug effects , Humans , Mice , Organ Specificity , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Transcriptome/drug effects
18.
Neuropharmacology ; 128: 416-424, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29101021

ABSTRACT

Microglia are fundamentally important immune cells within the central nervous system (CNS) that respond to environmental challenges to maintain normal physiological processes. Alterations in steady-state cellular function and over-activation of microglia can facilitate the initiation and progression of neuropathological conditions such as Alzheimer's disease, Multiple Sclerosis, and Major Depressive Disorder. Alcohol consumption disrupts signaling pathways including both innate and adaptive immune responses that are necessary for CNS homeostasis. Coordinate expression of these genes is not ascertained from an admixture of CNS cell-types, underscoring the importance of examining isolated cellular populations to reveal systematic gene expression changes arising from mature microglia. Unbiased RNA-Seq profiling was used to identify gene expression changes in isolated prefrontal cortical microglia in response to recurring bouts of voluntary alcohol drinking behavior. The voluntary ethanol paradigm utilizes long-term consumption ethanol that results in escalated alcohol intake and altered cortical plasticity that is seen in humans. Gene coexpression analysis identified a coordinately regulated group of genes, unique to microglia, that collectively are associated with alcohol consumption. Genes within this group are involved in toll-like receptor signaling and transforming growth factor beta signaling. Network connectivity of this group identified Siglech as a putative hub gene and highlighted the potential importance of proteases in the microglial response to chronic ethanol. In conclusion, we identified a distinctive microglial gene expression signature for neuroimmune responses related to alcohol consumption that provides valuable insight into microglia-specific changes underlying the development of substance abuse, and possibly other CNS disorders.


Subject(s)
Alcoholism/pathology , Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Microglia/metabolism , Transcriptome/drug effects , Analysis of Variance , Animals , CD11b Antigen/metabolism , Choice Behavior/drug effects , Computational Biology , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , NF-kappa B/metabolism , Signal Transduction/drug effects , Toll-Like Receptors/metabolism , Transcriptome/physiology , Transforming Growth Factor beta/metabolism
19.
Nat Commun ; 7: 12867, 2016 Sep 26.
Article in English | MEDLINE | ID: mdl-27666021

ABSTRACT

Alcohol promotes lasting neuroadaptive changes that may provide relief from depressive symptoms, often referred to as the self-medication hypothesis. However, the molecular/synaptic pathways that are shared by alcohol and antidepressants are unknown. In the current study, acute exposure to ethanol produced lasting antidepressant and anxiolytic behaviours. To understand the functional basis of these behaviours, we examined a molecular pathway that is activated by rapid antidepressants. Ethanol, like rapid antidepressants, alters γ-aminobutyric acid type B receptor (GABABR) expression and signalling, to increase dendritic calcium. Furthermore, new GABABRs are synthesized in response to ethanol treatment, requiring fragile-X mental retardation protein (FMRP). Ethanol-dependent changes in GABABR expression, dendritic signalling, and antidepressant efficacy are absent in Fmr1-knockout (KO) mice. These findings indicate that FMRP is an important regulator of protein synthesis following alcohol exposure, providing a molecular basis for the antidepressant efficacy of acute ethanol exposure.

20.
Biol Psychiatry ; 79(6): 422-4, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26893191
SELECTION OF CITATIONS
SEARCH DETAIL
...