Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Atmos Chem Phys ; 19(1): 181-204, 2019.
Article in English | MEDLINE | ID: mdl-30828349

ABSTRACT

An accurate simulation of the absorption properties is key for assessing the radiative effects of aerosol on meteorology and climate. The representation of how chemical species are mixed inside the particles (the mixing state) is one of the major uncertainty factors in the assessment of these effects. Here we compare aerosol optical properties simulations over Europe and North America, coordinated in the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII), to 1 year of AERONET sunphotometer retrievals, in an attempt to identify a mixing state representation that better reproduces the observed single scattering albedo and its spectral variation. We use a single post-processing tool (FlexAOD) to derive aerosol optical properties from simulated aerosol speciation profiles, and focus on the absorption enhancement of black carbon when it is internally mixed with more scattering material, discarding from the analysis scenes dominated by dust. We found that the single scattering albedo at 440 nm (ω 0,440) is on average overestimated (underestimated) by 3-5 % when external (core-shell internal) mixing of particles is assumed, a bias comparable in magnitude with the typical variability of the quantity. The (unphysical) homogeneous internal mixing assumption underestimates ω 0,440 by ~ 14 %. The combination of external and core-shell configurations (partial internal mixing), parameterized using a simplified function of air mass aging, reduces the ω 0,440 bias to -1/-3 %. The black carbon absorption enhancement (E abs) in core-shell with respect to the externally mixed state is in the range 1.8-2.5, which is above the currently most accepted upper limit of ~ 1.5. The partial internal mixing reduces E abs to values more consistent with this limit. However, the spectral dependence of the absorption is not well reproduced, and the absorption Ångström exponent AAE 675 440 is overestimated by 70-120 %. Further testing against more comprehensive campaign data, including a full characterization of the aerosol profile in terms of chemical speciation, mixing state, and related optical properties, would help in putting a better constraint on these calculations.

2.
Atmos Chem Phys ; 18(12): 8929-8952, 2018.
Article in English | MEDLINE | ID: mdl-30147714

ABSTRACT

In the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3), and as contribution to the second phase of the Hemispheric Transport of Air Pollution (HTAP2) activities for Europe and North America, the impacts of a 20 % decrease of global and regional anthropogenic emissions on surface air pollutant levels in 2010 are simulated by an international community of regional-scale air quality modeling groups, using different state-of-the-art chemistry and transport models (CTMs). The emission perturbations at the global level, as well as over the HTAP2-defined regions of Europe, North America and East Asia, are first simulated by the global Composition Integrated Forecasting System (C-IFS) model from European Centre for Medium-Range Weather Forecasts (ECMWF), which provides boundary conditions to the various regional CTMs participating in AQMEII3. On top of the perturbed boundary conditions, the regional CTMs used the same set of perturbed emissions within the regional domain for the different perturbation scenarios that introduce a 20 % reduction of anthropogenic emissions globally as well as over the HTAP2-defined regions of Europe, North America and East Asia. Results show that the largest impacts over both domains are simulated in response to the global emission perturbation, mainly due to the impact of domestic emission reductions. The responses of NO2, SO2 and PM concentrations to a 20 % anthropogenic emission reduction are almost linear (~ 20 % decrease) within the global perturbation scenario with, however, large differences in the geographical distribution of the effect. NO2, CO and SO2 levels are strongly affected over the emission hot spots. O3 levels generally decrease in all scenarios by up to ~ 1 % over Europe, with increases over the hot spot regions, in particular in the Benelux region, by an increase up to ~ 6 % due to the reduced effect of NOx titration. O3 daily maximum of 8 h running average decreases in all scenarios over Europe, by up to ~ 1 %. Over the North American domain, the central-to-eastern part and the western coast of the US experience the largest response to emission perturbations. Similar but slightly smaller responses are found when domestic emissions are reduced. The impact of intercontinental transport is relatively small over both domains, however, still noticeable particularly close to the boundaries. The impact is noticeable up to a few percent, for the western parts of the North American domain in response to the emission reductions over East Asia. O3 daily maximum of 8 h running average decreases in all scenarios over north Europe by up to ~ 5 %. Much larger reductions are calculated over North America compared to Europe. In addition, values of the Response to Extra-Regional Emission Reductions (RERER) metric have been calculated in order to quantify the differences in the strengths of nonlocal source contributions to different species among the different models. We found large RERER values for O3 (~ 0.8) over both Europe and North America, indicating a large contribution from non-local sources, while for other pollutants including particles, low RERER values reflect a predominant control by local sources. A distinct seasonal variation in the local vs. non-local contributions has been found for both O3 and PM2.5, particularly reflecting the springtime long-range transport to both continents.

3.
Atmos Chem Phys ; 18(8): 5967-5989, 2018 Apr 27.
Article in English | MEDLINE | ID: mdl-30079086

ABSTRACT

The impact of air pollution on human health and the associated external costs in Europe and the United States (US) for the year 2010 are modeled by a multi-model ensemble of regional models in the frame of the third phase of the Air Quality Modelling Evaluation International Initiative (AQMEII3). The modeled surface concentrations of O3, CO, SO2 and PM2.5 are used as input to the Economic Valuation of Air Pollution (EVA) system to calculate the resulting health impacts and the associated external costs from each individual model. Along with a base case simulation, additional runs were performed introducing 20 % anthropogenic emission reductions both globally and regionally in Europe, North America and east Asia, as defined by the second phase of the Task Force on Hemispheric Transport of Air Pollution (TF-HTAP2). Health impacts estimated by using concentration inputs from different chemistry-transport models (CTMs) to the EVA system can vary up to a factor of 3 in Europe (12 models) and the United States (3 models). In Europe, the multi-model mean total number of premature deaths (acute and chronic) is calculated to be 414 000, while in the US, it is estimated to be 160 000, in agreement with previous global and regional studies. The economic valuation of these health impacts is calculated to be EUR 300 billion and 145 billion in Europe and the US, respectively. A subset of models that produce the smallest error compared to the surface observations at each time step against an all-model mean ensemble results in increase of health impacts by up to 30 % in Europe, while in the US, the optimal ensemble mean led to a decrease in the calculated health impacts by ~ 11 %. A total of 54 000 and 27 500 premature deaths can be avoided by a 20 % reduction of global anthropogenic emissions in Europe and the US, respectively. A 20 % reduction of North American anthropogenic emissions avoids a total of ~ 1000 premature deaths in Europe and 25 000 total premature deaths in the US. A 20 % decrease of anthropogenic emissions within the European source region avoids a total of 47 000 premature deaths in Europe. Reducing the east Asian anthropogenic emissions by 20 % avoids ~ 2000 total premature deaths in the US. These results show that the domestic anthropogenic emissions make the largest impacts on premature deaths on a continental scale, while foreign sources make a minor contribution to adverse impacts of air pollution.

SELECTION OF CITATIONS
SEARCH DETAIL
...