Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 846: 157464, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-35868380

ABSTRACT

The agro-industrial sector makes a high contribution to greenhouse gas emissions; therefore, proper waste management is crucial to reduce the carbon footprint of the food chain. Hydrothermal carbonization (HTC) is a promising and flexible thermochemical process for converting organic materials into energy and added-value products that can be used in different applications. In this work, grape marc residues before and after an extraction process for recovering polyphenols were hydrothermally treated at 220 °C for 1 h. The resulting hydrochar and process water were investigated to test an innovative cascade approach aimed at a multiple product and energy recovery based on the integration of HTC with anaerobic digestion. The results show that this biorefinery approach applied to grape marc could allow to diversify and integrate its potential valorisation options. The produced hydrochars possess an increased fixed carbon content compared to the feedstock (up to +70 %) and, therefore, can be used in soil, immobilizing carbon in a stable form and partially replacing peat in growing media (up to 5 % in case of hydrochar from grape marc after extraction), saving the consumption of this natural substrate. In addition, energy can be recovered from both hydrochar by combustion and from process water through anaerobic digestion to produce biogas. Hydrochars show good properties as solid fuel similar to lignite, with an energy content of around 27 MJ kg-1 (+30 % compared to the feedstock). The anaerobic digestion of the process water allowed obtaining up to 137 mL of biomethane per gram of fed COD. Finally, while HTC process waters are suitable for biological treatment, attention must be paid to the presence of inhibiting compounds that induce acute toxic effects in aerobic conditions. The proposed approach is consistent with the principles of circular economy and could increase the overall sustainability and resilience of the agro-industrial sector.


Subject(s)
Biochemical Phenomena , Vitis , Carbon , Soil , Temperature , Water
2.
Int J Biol Macromol ; 186: 79-91, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34237369

ABSTRACT

As tighter regulations on color in discharges to water bodies are more widely implemented worldwide, the demand for reliable inexpensive technologies for dye removal grows. In this study, the removal of the basic dye, methylene blue, by adsorption onto low-cost sodium alginate-kaolin beads was investigated to determine the effect of operating parameters (initial dye concentration, contact time, pH, adsorbent dosage, temperature, agitation speed) on dye removal efficiency. The composite beads and individual components were characterized by a number of analytical techniques. Three models were developed to describe the adsorption as a function of the operating parameters using regression analysis, and two powerful intelligent modeling techniques, genetic programming and artificial neural network (ANN). The ANN model is best in predicting dye removal efficiency with R2 = 0.97 and RMSE = 3.59. The developed model can be used as a useful tool to optimize treatment processes using the promising adsorbent, to eliminate basic dyes from aqueous solutions. Adsorption followed a pseudo-second order kinetics and was best described by the Freundlich isotherm. Encapsulating the kaolin powder in sodium alginate resulted in removal efficiency of 99.56% and a maximum adsorption capacity of 188.7 mg.g-1, a more than fourfold increase over kaolin alone.


Subject(s)
Alginates/chemistry , Kaolin/chemistry , Methylene Blue/isolation & purification , Neural Networks, Computer , Water Pollutants, Chemical/isolation & purification , Adsorption , Chemical Fractionation , Kinetics , Powders , Regression Analysis , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...