Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Endocr Soc ; 8(2): bvad172, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38196663

ABSTRACT

Context: The gonadotropin-releasing hormone receptor variant GNRHR p.Q106R (rs104893836) in homozygosity, compound heterozygosity, or single heterozygosity is often reported as the causative variant in idiopathic hypogonadotropic hypogonadism (IHH) patients with GnRH deficiency. Genotyping of a Maltese newborn cord-blood collection yielded a minor allele frequency (MAF) 10 times higher (MAF = 0.029; n = 493) than that of the global population (MAF = 0.003). Objective: To determine whether GNRHR p.Q106R in heterozygosity influences profiles of endogenous hormones belonging to the hypothalamic-pituitary axis and the onset of puberty and fertility in adult men (n = 739) and women (n = 239). Design Setting and Participants: Analysis of questionnaire data relating to puberty and fertility, genotyping of the GNRHR p.Q106R variant, and hormone profiling of a highly phenotyped Maltese adult cohort from the Maltese Acute Myocardial Infarction Study. Main Outcome and Results: Out of 978 adults, 43 GNRHR p.Q106R heterozygotes (26 men and 17 women) were identified. Hormone levels and fertility for all heterozygotes are within normal parameters except for TSH, which was lower in men 50 years or older. Conclusion: Hormone data and baseline fertility characteristics of GNRHR p.Q106R heterozygotes are comparable to those of homozygous wild-type individuals who have no reproductive problems. The heterozygous genotype alone does not impair the levels of investigated gonadotropins and sex steroid hormones or affect fertility. GNRHR p.Q106R heterozygotes who exhibit IHH characteristics must have at least another variant, probably in a different IHH gene, that drives pathogenicity. We also conclude that GNRHR p.Q106R is likely a founder variant due to its overrepresentation and prevalence in the island population of Malta.

2.
Ageing Res Rev ; 77: 101610, 2022 05.
Article in English | MEDLINE | ID: mdl-35338919

ABSTRACT

Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality in the adult population worldwide and represent a severe economic burden and public health concern. The majority of human genes do not code for proteins. However, noncoding transcripts play important roles in ageing that significantly increases the risk for CVDs. Noncoding RNAs (ncRNAs) are critical regulators of multiple biological processes related to ageing such as oxidative stress, mitochondrial dysfunction and chronic inflammation. NcRNAs are also involved in pathophysiological developments within the cardiovascular system including arrhythmias, cardiac hypertrophy, fibrosis, myocardial infarction and heart failure. In this review article, we cover the roles of ncRNAs in cardiovascular ageing and disease as well as their potential therapeutic applications in CVDs.


Subject(s)
Cardiovascular Diseases , Cardiovascular System , MicroRNAs , RNA, Long Noncoding , Aging/genetics , Cardiovascular Diseases/genetics , Cardiovascular System/metabolism , Heart , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Untranslated/genetics
3.
Cardiovasc Res ; 118(16): 3183-3197, 2022 12 29.
Article in English | MEDLINE | ID: mdl-34648023

ABSTRACT

Despite significant advances in the diagnosis and treatment of cardiovascular diseases, recent calls have emphasized the unmet need to improve precision-based approaches in cardiovascular disease. Although some studies provide preliminary evidence of the diagnostic and prognostic potential of circulating coding and non-coding RNAs, the complex RNA biology and lack of standardization have hampered the translation of these markers into clinical practice. In this position paper of the CardioRNA COST action CA17129, we provide recommendations to standardize the RNA development process in order to catalyse efforts to investigate novel RNAs for clinical use. We list the unmet clinical needs in cardiovascular disease, such as the identification of high-risk patients with ischaemic heart disease or heart failure who require more intensive therapies. The advantages and pitfalls of the different sample types, including RNAs from plasma, extracellular vesicles, and whole blood, are discussed in the sample matrix, together with their respective analytical methods. The effect of patient demographics and highly prevalent comorbidities, such as metabolic disorders, on the expression of the candidate RNA is presented and should be reported in biomarker studies. We discuss the statistical and regulatory aspects to translate a candidate RNA from a research use only assay to an in-vitro diagnostic test for clinical use. Optimal planning of this development track is required, with input from the researcher, statistician, industry, and regulatory partners.


Subject(s)
Cardiovascular Diseases , Heart Failure , Humans , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , Cardiovascular Diseases/therapy , RNA/genetics , Biomarkers , Prognosis
4.
Clin Genet ; 101(1): 20-31, 2022 01.
Article in English | MEDLINE | ID: mdl-34219226

ABSTRACT

The Ehlers-Danlos syndromes (EDS) are a collection of rare hereditary connective tissue disorders with heterogeneous phenotypes, usually diagnosed following clinical examination and confirmatory genetic testing. Diagnosis of the commonest subtype, hypermobile Ehlers-Danlos Syndrome (hEDS), relies solely on a clinical diagnosis since its molecular aetiology remains unknown. We performed an up-to-date literature search and selected 11 out of 304 publications according to a set of established criteria. Studies reporting variants affecting collagen proteins were found to be hindered by cohort misclassification and subsequent lack of reproducibility of these genetic findings. The role of the described variants affecting Tenascin-X and LZTS1 is yet to be demonstrated in the majority of hEDS cases, while the functional implication of associated signaling pathways and genes requires further elucidation. The available literature on the genetics of hEDS is scant, dispersed and conflicting due to out-dated nosology terminology. Recent literature has suggested the role of several promising candidate mechanisms which may be linked to the underlying molecular aetiology. Knowledge of the molecular genetic basis of hEDS is expected to increase in the near future through the mainstream use of high-throughput sequencing combined with the updated classification of EDS, and the upcoming Hypermobile Ehlers-Danlos Genetic Evaluation (HEDGE) study.


Subject(s)
Biomedical Research , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/etiology , Genetic Association Studies , Genetic Predisposition to Disease , Biomedical Research/trends , Disease Management , Genetic Association Studies/methods , Humans
5.
Biotechniques ; 70(5): 243-250, 2021 05.
Article in English | MEDLINE | ID: mdl-33956496

ABSTRACT

In this study, DNA was extracted from whole blood which had been collected and stored at -20°C for 5-18 years, with the aim of determining the most suitable commercial DNA extraction kit for this purpose. DNA from nine cord blood samples collected in 1999, 2001 and 2012, with low blood volumes (<1 ml), and a partly dried adult blood sample collected in 2003, having a large blood volume (6 ml) was extracted using four different DNA extraction kits: Quick-DNA Miniprep Plus kit, DNeasy Blood & Tissue kit, MagAttract HMW DNA kit and QIAamp Blood Maxi kit. We concluded that high-quality DNA can be extracted from whole blood sample collections which have been stored for even up to 18 years in a biobank at -20°C.


Subject(s)
Blood , DNA/isolation & purification , Genetic Techniques
6.
Open Heart ; 4(2): e000620, 2017.
Article in English | MEDLINE | ID: mdl-28878948

ABSTRACT

OBJECTIVE: To investigate the effect of passive smoking, active smoking and smoking cessation on inflammation, lipid profile and the risk of myocardial infarction (MI). METHODS: A total of 423 cases with a first MI and 465 population controls from the Maltese Acute Myocardial Infarction (MAMI) Study were analysed. Data were collected through an interviewer-led questionnaire, and morning fasting blood samples were obtained. ORs adjusted for the conventional risk factors of MI (aORs) were calculated as an estimate of the relative risk of MI. The influence of smoking on biochemical parameters was determined among controls. RESULTS: Current smokers had a 2.7-fold (95% CI 1.7 to 4.2) and ex-smokers a 1.6-fold (95% CI 1.0 to 2.4) increased risk of MI. Risk increased with increasing pack-years and was accompanied by an increase in high-sensitivity C reactive protein levels and an abnormal lipid profile. Smoking cessation was associated with lower triglyceride levels. Exposure to passive smoking increased the risk of MI (aOR 3.2 (95% CI 1.7 to 6.3)), with the OR being higher for individuals exposed to passive smoking in a home rather than in a public setting (aOR 2.0 (95% CI 0.7 to 5.6) vs aOR 1.2 (95% CI 0.7 to 2.0)). Passive smoke exposure was associated with higher levels of total cholesterol, triglycerides and total cholesterol:high-density lipoprotein cholesterol ratio compared with individuals not exposed to passive smoking. CONCLUSIONS: Both active and passive smoking are strong risk factors for MI. This risk increased with increasing pack-years and decreased with smoking cessation. Such effects may be partly mediated through the influence of smoking on inflammation and lipid metabolism.

7.
BMC Med Genet ; 17(1): 65, 2016 09 09.
Article in English | MEDLINE | ID: mdl-27613114

ABSTRACT

BACKGROUND: Mutations in Leucine-rich repeat kinase 2 NM_198578 (LRRK2 c.6055G > A (p.G2019S), LRRK2 c.4321C > G (p.R1441G)) and alpha-synuclein NM_000345 (SNCA c.209G > A (p.A53T)) genes causing Parkinson's disease (PD) are common in Mediterranean populations. Variants in the Quinoid Dihydropteridine Reductase NM_000320 (QDPR c.68G > A (p.G23D)), Sepiapterin Reductase NM_003124 (SPR c.596-2A > G) and Methylenetetrahydrofolate Reductase NM_005957 (MTHFR c.677C > T and c.1298A > C) genes are frequent in Malta and potential candidates for PD. METHODS: 178 cases and 402 control samples from Malta collected as part of the Geoparkinson project were genotyped for MTHFR polymorphisms, QDPR and SPR mutations. Only PD and parkinsonism cases were tested for SNCA and LRRK2 mutations. RESULTS: LRRK2 c.4321C > G and SNCA c.209G > A were not detected. The LRRK2 c.6055G > A mutation was found in 3.1 % of Maltese PD cases. The QDPR mutation was found in both cases and controls and did not increase risk for PD. The SPR mutation was found in controls only. The odds ratios for MTHFR polymorphisms were not elevated. CONCLUSIONS: The LRRK2 c.6055G > A is a cause of PD in the Maltese, whilst QDPR c.68G > A, SPR c.596-2A > G and MTHFR c.677C > T and c.1298A > C are not important determinants of PD.


Subject(s)
Alcohol Oxidoreductases/genetics , Dihydropteridine Reductase/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Parkinson Disease/genetics , White People/genetics , Adult , Aged , Aged, 80 and over , Alleles , Case-Control Studies , Female , Gene Frequency , Genotype , Humans , Male , Malta , Middle Aged , Odds Ratio , Parkinson Disease/pathology , Polymorphism, Single Nucleotide
8.
BMC Med Genomics ; 4: 64, 2011 Aug 10.
Article in English | MEDLINE | ID: mdl-21827714

ABSTRACT

BACKGROUND: It is widely accepted that atherosclerosis and inflammation are intimately linked. Monocytes play a key role in both of these processes and we hypothesized that activation of inflammatory pathways in monocytes would lead to, among others, proatherogenic changes in the monocyte transcriptome. Such differentially expressed genes in circulating monocytes would be strong candidates for further investigation in disease association studies. METHODS: Endotoxin, lipopolysaccharide (LPS), or saline control was infused in healthy volunteers. Monocyte RNA was isolated, processed and hybridized to Hver 2.1.1 spotted cDNA microarrays. Differential expression of key genes was confirmed by RT-PCR and results were compared to in vitro data obtained by our group to identify candidate genes. RESULTS: All subjects who received LPS experienced the anticipated clinical response indicating successful stimulation. One hour after LPS infusion, 11 genes were identified as being differentially expressed; 1 down regulated and 10 up regulated. Four hours after LPS infusion, 28 genes were identified as being differentially expressed; 3 being down regulated and 25 up regulated. No genes were significantly differentially expressed following saline infusion. Comparison with results obtained in in vitro experiments lead to the identification of 6 strong candidate genes (BATF, BID, C3aR1, IL1RN, SEC61B and SLC43A3) CONCLUSION: In vivo endotoxin exposure of healthy individuals resulted in the identification of several candidate genes through which systemic inflammation links to atherosclerosis.


Subject(s)
Atherosclerosis/genetics , Inflammation/genetics , Lipopolysaccharides/administration & dosage , Atherosclerosis/metabolism , Gene Expression Regulation , Humans , Injections, Intravenous , Male , Monocytes/immunology , Monocytes/metabolism , Oligonucleotide Array Sequence Analysis , Young Adult
9.
Mol Genet Metab ; 90(3): 277-83, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17188538

ABSTRACT

Deficient activity of the Dihydropteridine Reductase enzyme (DHPR; EC 1.5.1.34; OMIM 261630) is due to mutations in the Quinoid Dihydropteridine Reductase gene on 4p15.3 (QDPR; RefSeq NM_000320). It results in defective recycling of tetrahydrobiopterin (BH(4)) and homozygotes have a rare form of atypical Hyperphenylalaninaemia and Phenylketonuria (aPKU). The heterozygote frequency in the Maltese population is high at 3.3%. The more recently described and rarer type of BH(4) deficiency due to Sepiapterin Reductase enzyme deficiency (SR; EC 1.1.1.153; OMIM 182125), which presents as an atypical form of Dopa Responsive Dystonia (DRD) [L. Bonafe, B. Thony, J.M. Penzien, B. Czarnecki, N. Blau, Mutations in the sepiapterin reductase gene cause a novel tetrahydrobiopterin-dependent monoamine-neurotransmitter deficiency without hyperphenylalaninemia, Am. J. Hum. Genet. 69 (2001) 269-277; B.R.G. Neville, R. Parascandalo, S. Attard Montalto, R. Farrugia, A.E. Felice, A congenital dopa responsive motor disorder: a Maltese variant due to sepiapterin reductase deficiency, Brain 128 (Pt10) (2005) 2291-2296.] has also been identified at high frequency (4.6%) in this population. Two mutations, the c.68G>A in QDPR (p.G23D), and the new SPR, IVS2-2A>G mutation at the splice site consensus sequence in intron 2 of the Sepiapterin Reductase gene (SPR; RefSeq NM_003124) on 2p14-p12, were found to be the sole causative mutations in all the patients with DHPR deficiency and SR deficiency studied. All parents were heterozygotes for the corresponding mutation and showed no clinical symptoms. Three polymorphisms, c.96C>T (p.A32A), c. 345G>A (p.S115S) and c. 396G>A (p.L132L), have also been identified in the QDPR gene, defining four wild-type frameworks, useful in molecular epidemiology studies. The c. 68G>A mutation in QDPR was found only on framework I, suggesting a founder effect. In contrast no additional sequence diversity was found in the SPR gene whether in wild-type or mutant alleles which is also consistent with a founder effect.


Subject(s)
Biopterins/analogs & derivatives , Phenylketonurias/genetics , Phenylketonurias/metabolism , Alcohol Oxidoreductases/deficiency , Alcohol Oxidoreductases/genetics , Alleles , Base Sequence , Biopterins/deficiency , DNA Primers/genetics , Dihydropteridine Reductase/genetics , Gene Frequency , Humans , Infant , Male , Malta , Molecular Biology , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...