Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Recent Pat Biotechnol ; 17(2): 186-195, 2023.
Article in English | MEDLINE | ID: mdl-35996262

ABSTRACT

BACKGROUND: Nanotechnology and nanobiotechnology have emerged as novel technologies for the production and application of nanoscale materials in different pharmaceutical, medical, and biological fields. Besides, there are a bunch of recently published patents in this field. Although Carbon Nanotubes (CNTs) have various advantages and can be applied for a wide variety of purposes, their toxicity on humans is a matter of concern. OBJECTIVE: This study aimed to evaluate six different types of CNTs, including pristine, carboxylated, and hydroxylated single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) on three human cell lines. METHODS: MTT assay was employed to assess the cytotoxicity of six types of CNTs, including pristine, carboxylated, and hydroxylated forms of SWCNTs and MWCNTs on three different human cell lines. RESULTS: The findings of the MTT assay showed that the six different types of CNTs (100- 600 µg/mL) exhibited different levels of cytotoxicity on the three human cell lines. The observed trend presented dose-dependent cytotoxicity on the three studied cell lines, including pulmonary, skin, and gastrointestinal cell lines. SWCNT-COOH and MWCNTs accounted for the lowest cell viability in the three human cell lines. CONCLUSION: In conclusion, researchers and industrial workers are recommended to be cautious while working with different types of CNT because all their toxicity dimensions have not been determined yet.


Subject(s)
Nanotubes, Carbon , Humans , Nanotubes, Carbon/toxicity , Patents as Topic , Cell Line , Lung , Cell Survival
2.
Naunyn Schmiedebergs Arch Pharmacol ; 395(2): 247-265, 2022 02.
Article in English | MEDLINE | ID: mdl-34994824

ABSTRACT

Several studies have focused on the high potential effects of probiotics on the reproductive system. However, there is a paucity of information regarding the ameliorative intracellular roles of indigenous Iranian yogurt-extracted/cultured probiotics on animals' reproductive health suffering from obesity and/or fatty liver disease, such as non-alcoholic fatty liver disease (NAFLD). For this purpose, simultaneously with the consumption of D-fructose (200 g/1000 mL water, induction of NAFLD model), all pubertal animals were also gavaged every day for 63 consecutive days with extracted probiotics, including 1 × 109 CFU/mL of Lactobacillus acidophilus (LA), Bifidobacterium spp. (BIF), Bacillus coagulans (BC), Lactobacillus rhamnosus (LR), and a mixture form (LA + BIF + BC + LR). At the end of the ninth week, the indices of epididymal sperm, and oxidative stress, as well as histopathological changes, were assessed. The results show that NAFLD could induce robust oxidative stress, highlighted as considerable increments in ROS level, TBARS content, total oxidized protein levels, along with severe decrements in reduced glutathione reservoirs, total antioxidant capacity in the hepatic and testicular tissues, as well as testicular and hepatic histopathological alterations. Moreover, a significant decrease in the percentage of sperm progressive motility, sperm count, and membrane integrity along with an increment in the percentage of sperm abnormality was detected in NAFLD animals. The observed adverse effects were significantly reversed upon probiotics treatment, especially in the group challenged with a mixture of all probiotics. Taken together, these findings indicate that the indigenous yogurt-isolated/cultured probiotics had a high potential antioxidant activity and the ameliorative effect against reprotoxicity and blood biochemical alterations induced by the NAFLD model. Highlights: 1. Reproductive indices could be reversely affected by xenobiotics and diseases. 2. NAFLD and cholestasis considerably affect the reproductive system in both genders. 3. NAFLD induced hepatic and testicular oxidative stress (OS). 4. NAFLD induced histopathological alterations and spermatotoxicity through OS. 5. The adverse effects were significantly reversed upon exposure to probiotics.


Subject(s)
Antioxidants/metabolism , Non-alcoholic Fatty Liver Disease/therapy , Oxidative Stress/physiology , Probiotics/pharmacology , Animals , Disease Models, Animal , Iran , Male , Non-alcoholic Fatty Liver Disease/complications , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Spermatozoa/pathology , Testis/pathology
3.
Clin Exp Hepatol ; 8(3): 195-210, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36685263

ABSTRACT

Taurine (TAU) is a free amino acid abundant in the human body. Various physiological roles have been attributed to TAU. At the subcellular level, mitochondria are the primary targets for TAU function. Meanwhile, it has been found that TAU depletion is associated with severe pathologies. Cholestasis is a severe clinical complication that can progress to liver fibrosis, cirrhosis, and hepatic failure. Bile duct ligation (BDL) is a reliable model for assessing cholestasis/cirrhosis and related complications. The current study was designed to investigate the effects of cholestasis/cirrhosis on tissue and mitochondrial TAU reservoirs. Cholestatic rats were monitored (14 and 42 days after BDL surgery), and TAU levels were assessed in various tissues and isolated mitochondria. There was a significant decrease in TAU in the brain, heart, liver, kidney, skeletal muscle, intestine, lung, testis, and ovary of the BDL animals (14 and 42 days after surgery). Mitochondrial levels of TAU were also significantly depleted in BDL animals. Tissue and mitochondrial TAU levels in cirrhotic animals (42 days after the BDL operation) were substantially lower than those in the cholestatic rats (14 days after BDL surgery). These data indicate an essential role for tissue and mitochondrial TAU in preventing organ injury induced by cholestasis/cirrhosis and could justify TAU supplementation for therapeutic purposes.

4.
J Biochem Mol Toxicol ; 35(9): e22846, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34250697

ABSTRACT

The liver is the primary organ affected by cholestasis. However, the brain, skeletal muscle, heart, and kidney are also severely influenced by cholestasis/cirrhosis. However, little is known about the molecular mechanisms of organ injury in cholestasis. The current study was designed to evaluate the mitochondrial glutathione redox state as a significant index in cell death. Moreover, tissue energy charge (EC) was calculated. Rats underwent bile duct ligation (BDL) and the brain, heart, liver, kidney, and skeletal muscle mitochondria were assessed at scheduled time intervals (3, 7, 14, and 28 days after BDL). A significant decrease in mitochondrial glutathione redox state and EC was detected in BDL animals. Moreover, disturbed mitochondrial indices were evident in different organs of BDL rats. These data could offer new insight into the mechanisms of organ injury and the source of oxidative stress during cholestasis and might provide novel therapeutic strategies against these complications.


Subject(s)
Cholestasis/metabolism , Energy Metabolism , Mitochondria, Liver/metabolism , Mitochondria, Muscle/metabolism , Animals , Cholestasis/pathology , Disease Models, Animal , Male , Mitochondria, Liver/pathology , Mitochondria, Muscle/pathology , Organ Specificity , Oxidation-Reduction , Rats , Rats, Sprague-Dawley
5.
Front Vet Sci ; 8: 603262, 2021.
Article in English | MEDLINE | ID: mdl-33842567

ABSTRACT

Lithium (Li+) is prescribed against a wide range of neurological disorders. Besides its excellent therapeutic properties, there are several adverse effects associated with Li+. The impact of Li+ on renal function and diabetes insipidus is the most common adverse effect of this drug. On the other hand, infertility and decreased libido is another complication associated with Li+. It has been found that sperm indices of functionality, as well as libido, is significantly reduced in Li+-treated men. These adverse effects might lead to drug incompliance and the cessation of drug therapy. Hence, the main aims of the current study were to illustrate the mechanisms of adverse effects of Li+ on the testis tissue, spermatogenesis process, and hormonal changes in two experimental models. In the in vitro experiments, Leydig cells (LCs) were isolated from healthy mice, cultured, and exposed to increasing concentrations of Li+ (0, 10, 50, and 100 ppm). In the in vivo section of the current study, mice were treated with Li+ (0, 10, 50, and 100 ppm, in drinking water) for five consecutive weeks. Testis and sperm samples were collected and assessed. A significant sign of cytotoxicity (LDH release and MTT assay), along with disrupted testosterone biosynthesis, impaired mitochondrial indices (ATP level and mitochondrial depolarization), and increased biomarkers of oxidative stress were detected in LCs exposed to Li+. On the other hand, a significant increase in serum and testis Li+ levels were detected in drug-treated mice. Moreover, ROS formation, LPO, protein carbonylation, and increased oxidized glutathione (GSSG) were detected in both testis tissue and sperm specimens of Li+-treated mice. Several sperm anomalies were also detected in Li+-treated animals. On the other hand, sperm mitochondrial indices (mitochondrial dehydrogenases activity and ATP levels) were significantly decreased in drug-treated groups where mitochondrial depolarization was increased dose-dependently. Altogether, these data mention oxidative stress and mitochondrial impairment as pivotal mechanisms involved in Li+-induced reproductive toxicity. Therefore, based on our previous publications in this area, therapeutic options, including compounds with high antioxidant properties that target these points might find a clinical value in ameliorating Li+-induced adverse effects on the male reproductive system.

7.
Naunyn Schmiedebergs Arch Pharmacol ; 394(6): 1301-1314, 2021 06.
Article in English | MEDLINE | ID: mdl-33538845

ABSTRACT

Bile duct obstruction or cholestasis can occur by several diseases or xenobiotics. Cholestasis and the accumulation of the bile constituents in the liver primarily damage this organ. On the other hand, extrahepatic organs are also affected by cholestasis. The kidney is the most affected tissue during cholestatic liver injury. Cholestasis-associated renal injury is known as cholemic nephropathy (CN). Several lines of evidence specify the involvement of oxidative stress and mitochondrial impairment in the pathogenesis of CN. The current study aimed to assess the role of silymarin as a potent antioxidant on CN-induced oxidative stress and mitochondrial dysfunction in the kidney. Bile duct ligated (BDL) rats were treated with silymarin (10 and 100 mg/kg, oral) for seven consecutive days. A significant increase in reactive oxygen species (ROS), lipid peroxidation, protein carbonylation, and oxidized glutathione (GSSG) levels were evident in the kidney of BDL animals. Moreover, reduced glutathione (GSH) content and total antioxidant capacity were significantly decreased in the kidney of cholestatic rats. Mitochondrial depolarization, decreased mitochondrial dehydrogenases activity, mitochondrial permeabilization, and depleted ATP stores were detected in the kidney mitochondria isolated from BDL animals. Kidney histopathological alterations, as well as serum and urine levels of renal injury biomarkers, were also significantly different in the BDL group. It was found that silymarin treatment significantly ameliorated CN-induced renal injury. The antioxidant effects of silymarin and its positive impact on mitochondrial indices seem to play a significant role in its renoprotective effects during cholestasis.


Subject(s)
Antioxidants/pharmacology , Cholestasis/complications , Kidney Diseases/prevention & control , Silymarin/pharmacology , Animals , Antioxidants/administration & dosage , Disease Models, Animal , Dose-Response Relationship, Drug , Glutathione/metabolism , Kidney Diseases/etiology , Lipid Peroxidation/drug effects , Male , Mitochondria/metabolism , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Silymarin/administration & dosage
8.
Naunyn Schmiedebergs Arch Pharmacol ; 394(6): 1191-1203, 2021 06.
Article in English | MEDLINE | ID: mdl-33527194

ABSTRACT

Cholestasis is a clinical complication with different etiologies. The liver is the primary organ influenced in cholestasis. Renal injury is also a severe clinical complication in cholestatic/cirrhotic patients. Several studies mentioned the importance of oxidative stress and mitochondrial impairment as two mechanistically interrelated events in cholestasis-induced organ injury. Apoptosis-inducing factor (AIF) is a flavoprotein located in the inner mitochondrial membrane. This molecule is involved in a distinct pathway of cell death. The current study aimed to evaluate the role of AIF in the pathophysiology of cholestasis-associated hepatic and renal injury. Bile duct ligation (BDL) was used as an animal model of cholestasis. Serum, urine, and tissue samples were collected at scheduled time intervals (3, 7, 14, and 28 days after BDL surgery). Tissues' AIF mRNA levels, as well as serum, urine, and tissue activity of AIF, were measured. Moreover, markers of DNA fragmentation and apoptosis were assessed in the liver and kidney of cholestatic animals. A significant increase in liver and kidney AIF mRNA levels, in addition to increased AIF activity in the liver, kidney, serum, and urine, was detected in BDL rats. DNA fragmentation and apoptosis were raised in the liver and kidney of cholestatic animals, especially at the early stage of the disease. The apoptotic mode of cell death in the liver and kidney was connected to a higher AIF level. These data mention the importance of AIF in the pathogenesis of cholestasis-induced organ injury, especially at the early stage of this disease. Mitochondrial release of apoptosis-inducing factor (AIF) seems to play a pathogenic role in cholestasis-associated hepatic and renal injury. AIF release is directly connected to oxidative stress and mitochondrial impairment in cholestatic animals.


Subject(s)
Apoptosis Inducing Factor/metabolism , Cholestasis/complications , Kidney Diseases/etiology , Liver Diseases/etiology , Animals , Apoptosis/physiology , Apoptosis Inducing Factor/genetics , Bile Ducts/pathology , Cholestasis/genetics , DNA Fragmentation , Disease Models, Animal , Kidney Diseases/genetics , Kidney Diseases/physiopathology , Liver Diseases/genetics , Liver Diseases/physiopathology , Male , Mitochondria/pathology , Oxidative Stress/physiology , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
9.
Clin Exp Hepatol ; 7(4): 377-389, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35402721

ABSTRACT

Aim of the study: Cholestasis is the stoppage of bile flow that primarily affects liver function. On the other hand, kidneys are also severely influenced during cholestasis. Cholestasis-induced kidney injury is known as cholemic nephropathy (CN). There is no precise pharmacological option in CN. Previous studies revealed that oxidative stress plays a crucial role in the pathogenesis of CN. On the other hand, the positive effects of pentoxifylline (PTX) against renal injury with different etiologies have been frequently reported. In the current study, the potential nephroprotective role of PTX in cholestasis-induced renal injury is investigated. Material and methods: Bile duct ligated (BDL) rats were treated with PTX (10, 50, and 100 mg/kg), and renal markers of oxidative stress, urine level of inflammatory cytokines, as well as renal histopathological alterations were monitored. Results: Significant changes in oxidative stress markers were detected in the BDL group. On the other hand, it was found that PTX (10, 50, and 100 mg/kg) significantly ameliorated cholestasis-induced oxidative stress in renal tissue. Renal histopathological changes, including interstitial inflammation, tubular atrophy, fibrosis, and cast formation, were detected in the BDL rats. Moreover, urine pro-inflammatory cytokines [interleukin (IL)-1, IL-9, IL-18, tumor necrosis factor α (TNF-α), and interferon γ (INF-γ)] were significantly increased in the cholestatic animals. PTX (10, 50, and 100 mg/kg, 14 days) significantly ameliorated renal histopathological alterations and urine levels of inflammatory cytokines. Conclusions: These data indicate a potential nephroprotective role for PTX in cholestasis. The effects of PTX on oxidative stress parameters and the inflammatory response could play a primary role in its renoprotective mechanisms.

10.
Biol Trace Elem Res ; 199(5): 1908-1918, 2021 May.
Article in English | MEDLINE | ID: mdl-32712907

ABSTRACT

Lithium is abundantly administered against bipolar disorder. On the other hand, the lithium-induced renal injury is a clinical complication which commonly reveals as drug-induced diabetes insipidus. However, lithium-induced cytotoxicity might also play a role in the adverse effects of this drug on the kidney. There is no clear cellular and molecular mechanism(s) for lithium-induced nephrotoxicity. The current study was designed to assess the effect of lithium on kidney tissue oxidative stress biomarkers and mitochondrial function and its relevance to drug-induced nephrotoxicity and electrolyte imbalance. Rats were treated with lithium (lithium carbonate, 25 and 50 mg/kg/day, i.p., for 28 consecutive days). Kidney mitochondria were also isolated from rats and exposed to increasing concentrations of lithium (0.01-10 mM). Serum and urine biomarkers of kidney injury, kidney tissue markers of oxidative stress, and renal histopathological changes were assessed. Moreover, several mitochondrial indices were monitored. Lithium-induced renal injury revealed a significant increase in urine and serum biomarkers of renal impairment. Lithium caused an increase in the kidney reactive oxygen species (ROS) level and lipid peroxidation (LPO). Renal glutathione (GSH) reservoirs were also depleted, and tissue antioxidant capacity decreased in lithium-treated animals. Significant tissue histopathological changes, including necrosis, Bowman capsule dilation, and interstitial inflammation, were evident in lithium-treated animals. On the other hand, significant alterations in kidney mitochondrial function were detected in lithium-treated groups. These data mention oxidative stress, mitochondrial dysfunction, and cellular energy crisis as the potential primary mechanisms for lithium-induced renal injury.


Subject(s)
Lithium , Mitochondria , Animals , Antioxidants/metabolism , Kidney/metabolism , Lipid Peroxidation , Lithium/toxicity , Mitochondria/metabolism , Oxidative Stress , Rats , Reactive Oxygen Species/metabolism
11.
Vet Med Sci ; 7(2): 521-533, 2021 03.
Article in English | MEDLINE | ID: mdl-33103380

ABSTRACT

The ovariectomized rat is a widely used preclinical model for studying postmenopausal and its complications. In this study, the therapeutic effect of flaxseed oil on the ovariectomized adult rats was investigated. Our results showed that biochemical parameters including calcium, oestrogen and progesterone levels increase 8 weeks after ovariectomy in rats. Also, the amount of alkaline phosphatase decreased significantly after 8 weeks compared with the OVX rat. The healing potential of flaxseed oil was proven by successfully recovering the affected tissue and preventing the unpleasant symptoms of ovariectomized rats. The biological effects of flaxseed oil may be due to high amounts of fatty acids, phytoestrogens and an array of antioxidants. The results suggest that flaxseed oil can mimic the action of oestrogen and can be a potential treatment for hormone replacement therapy (HRT).


Subject(s)
Hormones/blood , Linseed Oil/metabolism , Lipid Metabolism/drug effects , Animals , Blood Chemical Analysis , Female , Linseed Oil/administration & dosage , Ovariectomy , Rats , Rats, Sprague-Dawley , Uterus/drug effects , Uterus/metabolism
12.
Biomed Res Int ; 2020: 5487659, 2020.
Article in English | MEDLINE | ID: mdl-33299871

ABSTRACT

BACKGROUND: Treating nonalcoholic fatty liver disease (NAFLD) is considered one of the public health priorities in the past decade. So far, probiotics have represented promising results in controlling the signs and symptoms of NAFLD. However, attempts to find the ideal probiotic strain are still ongoing. The present study is designed to find the best strain amongst suitable probiotic strains according to their ability to ameliorate histopathological and oxidative stress biomarkers in hepatic steatosis-induced rats. METHODS: Initially, four probiotics species, including Lactobacillus (L.) acidophilus, L. casei, L. reuteri, and Bacillus coagulans, were cultured and prepared as a lyophilized powder for animals. The experiment lasted for fifty days. Initially, hepatic steatosis was induced by excessive ingestion of D-fructose in rats for eight weeks, followed by eight weeks of administering probiotics and D-fructose concurrently. Forty-two six-week-old male rats were alienated to different groups and were supplemented with different probiotics (1∗109 CFU in 500 mL drinking water). After eight weeks, blood and liver samples were taken for further evaluation, and plasma and oxidative stress markers corresponding to liver injuries were examined. RESULTS: Administration of probiotics over eight weeks reversed hepatic and blood triglyceride concentration and blood glucose levels. Also, probiotics significantly suppressed markers of oxidative stress in the liver tissue. CONCLUSIONS: Although some of the single probiotic formulations were able to mitigate oxidative stress markers, mixtures of probiotics significantly ameliorated more symptoms in the NAFLD animals. This enhanced effect might be due to probiotics' cumulative potential to maintain oxidative stress and deliver improved lipid profiles, liver function markers, and inflammatory markers.


Subject(s)
Bacillus coagulans , Lacticaseibacillus casei , Lactobacillus acidophilus , Limosilactobacillus reuteri , Non-alcoholic Fatty Liver Disease/prevention & control , Probiotics/therapeutic use , Animal Feed , Animals , Biomarkers/metabolism , Blood Glucose/metabolism , Dietary Supplements , Disease Models, Animal , Fructose , Liver/drug effects , Liver/microbiology , Male , Non-alcoholic Fatty Liver Disease/therapy , Oxidative Stress , Powders , Rats , Rats, Sprague-Dawley , Triglycerides/blood , Yogurt
13.
J Exp Pharmacol ; 12: 517-527, 2020.
Article in English | MEDLINE | ID: mdl-33235522

ABSTRACT

PURPOSE: Hepatic encephalopathy (HE) is described as impaired brain function induced by liver failure. Ammonia is the most suspected chemical involved in brain injury during HE. Although the precise mechanism of HE is not clear, several studies mentioned the role of oxidative stress in ammonia neurotoxicity. In animal models, the use of some compounds with antioxidant properties was reported to reduce the neurotoxic effects of ammonia, improve energy metabolism, and ameliorate the HE symptoms. Citicoline is a principal intermediate in the biosynthesis pathway of phosphatidylcholine that acts as neurovascular protection and repair effects. Various studies mentioned the neuroprotective and antioxidative effects of citicoline in the central nervous system. This study aims to investigate the potential protective effects of citicoline therapeutic in an animal model of HE. MATERIALS AND METHODS: Mice received acetaminophen (APAP,1g/kg, i. p.) and then treated with citicoline (500 mg/kg, i.p) one and two hours after APAP. Animals were monitored for locomotor activity and blood and brain ammonia levels. Moreover, markers of oxidative stress were assessed in the brain tissue. RESULTS: The result of the study revealed that plasma and brain ammonia and the liver injury markers increased, and locomotor activity impaired in the APAP-treated animals. Besides, an increase in markers of oxidative stress was evident in the brain of the APAP-treated mice. It was found that citicoline supplementation enhanced the animal's locomotor activity and improved brain tissue markers of oxidative stress. CONCLUSION: These data propose citicoline as a potential protective agent in HE. The effects of citicoline on oxidative stress markers could play a fundamental role in its neuroprotective properties during HE.

14.
Ecotoxicol Environ Saf ; 204: 110973, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32781346

ABSTRACT

Arsenic (As) exerts a wide range of adverse effects on biological systems, including the reproductive organs in males and females. However, the mechanisms of As-induced reproductive toxicity are mostly obscure. Recently, we showed that autophagy is an essential route for As2O3-induced reprotoxicity through the hypothalamic-pituitary-gonadal-sperm (HPG-S) axis in pubertal and matured F1-male mice. However, the role of autophagy in As2O3- induced ovarian toxicity is mostly unknown. Hence, this study aimed to elucidate the role of oxidative stress, mitochondrial impairment, and autophagic processes in the ovary of As-exposed female mice. For this purpose, mature female mice were challenged with 0, low (0.2), medium (2), and high (20 ppm) As2O3 from 35-days before mating till weaning their pups, and the F1- females from weaning until maturity. Then, all the mice were sacrificed, and oxidative stress parameters, mitochondrial indices, electron microscopic evaluation of the ovaries, expression of autophagic-related genes and proteins, and autophagosome formation were assessed. It was shown that medium and high As2O3 doses were a potent inducer of oxidative stress, mitochondrial dysfunction, and autophagy in the ovary of F1-generation. A dose-dependent increment in the gene expression of PDK1, PI3K, TSC2, AMPK, ULK1, ATG13, Beclin1, ATG12, ATG5, LC3, P62, ATG3, ATG7, and p62, as well as protein expression of Beclin1, and LC3- I, II, was evident in the ovaries of the As-treated animals. Moreover, a dose-dependent decrease in the expression of mTOR and Bcl-2 genes, and mTOR protein was detected with increasing doses of As, suggesting that As treatment-induced autophagy. Along with a dose-dependent increase in the number of MDC-labeled autophagic vacuoles, transmission electron microscopy also confirmed more autophagosomes and injured mitochondria in medium and high As2O3 doses groups. As2O3 also negatively affected the mean body weight, litter size, organ coefficient, and stereological indices in female mice. Finally, in physiological conditions, arsenic trioxide (As2O3) leads to an increased level of autophagy in the oocyte when many oocytes were being lost. These findings indicated that an imbalance in the oxidant-antioxidant system, mitochondrial impairment, and the autophagic process, through inhibition of mTOR, dependent and independent pathways, and Bcl-2, as well as activation of AMPK/PI3K/Beclin1/LC3 routes, could play a pivotal role in As-induced reproductive toxicity through ovarian dysfunction in females.


Subject(s)
Arsenic/toxicity , Autophagy/drug effects , Ovarian Follicle/drug effects , Ovary/drug effects , Animals , Female , Mice , Mice, Inbred BALB C , Microscopy, Electron, Transmission , Ovarian Follicle/growth & development , Ovary/ultrastructure , Random Allocation
15.
Curr Res Pharmacol Drug Discov ; 1: 10-18, 2020 Apr.
Article in English | MEDLINE | ID: mdl-34909638

ABSTRACT

It has been well documented that cirrhosis is associated with the intestinal injury. Intestinal injury in cirrhosis could lead to bacterial lipopolysaccharide (LPS) translocation to the systemic circulation. It has been found that high plasma LPS is connected with higher morbidity and mortality in cirrhotic patients. Therefore, finding therapeutic approaches to mitigate this complication has great clinical value. Several investigations mentioned the pivotal role of oxidative stress in cirrhosis-associated intestinal injury. It has been well-known that the redox balance of enterocytes is disturbed in cirrhotic patients. In the current study, the effects of thiol-reducing agents N-acetylcysteine (NAC) (0.5 and 1% w: v) and dithiothreitol (DTT) (0.5 and 1% w: v) on biomarkers of oxidative stress, tissue histopathological alterations, and LPS translocation is investigated in a rat model of cirrhosis. Bile duct ligation (BDL) surgery was used to induce cirrhosis in male Sprague-Dawley rats. Animals (n â€‹= â€‹48; 8 animals/group) were supplemented with NAC and DTT for 28 consecutive days. Significant changes in ileum and colon markers of oxidative stress were evident in BDL rats as judged by increased reactive oxygen species (ROS), lipid peroxidation, oxidized glutathione (GSSG), and protein carbonylation along with decreased antioxidant capacity and glutathione (GSH) content. Blunted villus, decreased villus number, and inflammation was also detected in the intestine of BDL animals. Moreover, serum LPS level was also significantly higher in BDL rats. NAC and DTT administration (0.5 and 1% w: v, gavage) significantly decreased biomarkers of oxidative stress, mitigated intestinal histopathological alterations, and restored tissue antioxidant capacity. Moreover, NAC and/or DTT significantly suppressed LPS translocation to the systemic circulation. The protective effects of thiol reducing agents in the intestine of cirrhotic rats could be attributed to the effect of these chemicals on the cellular redox environment and biomarkers of oxidative stress.

16.
Front Vet Sci ; 7: 591558, 2020.
Article in English | MEDLINE | ID: mdl-33392285

ABSTRACT

Carbon-based nanomaterials possess a remarkably high potential for biomedical applications due to their physical properties; however, their detrimental effects on reproduction are also concerned. Several reports indicate the toxicity of carbon nanotubes (CNT); nevertheless, their impact on intracellular organelles in the male reproductive organs has not been fully elucidated. Herein, we report on the reprotoxicity of single-walled (SWCNT) and multi-walled carbon nanotubes (MWCN) on several intracellular events and histological criteria in pubertal male BALB/c mice orally treated with 0, 10, and 50 mg/kg/day doses for 5 weeks. Biomarkers of oxidative stress and mitochondrial functionality, histopathological alterations, and epididymal sperm characteristics were determined. Oral administration of CNTs at 10 and 50 mg/kg evoked a significant decrement in weight coefficient, sperm viability and motility, hypo-osmotic swelling (HOS) test, sperm count, mitochondrial dehydrogenase activity, ATP content, total antioxidant capacity, and GSH/GSSH ratio in the testis and epididymal spermatozoa. On the other hand, percent abnormal sperm, testicular and sperm TBARS contents, protein carbonylation, ROS formation, oxidized glutathione level, and sperm mitochondrial depolarization were considerably increased. Significant histopathological and stereological alterations in the testis occurred in the groups challenged with CNTs. The current findings indicated that oxidative stress and mitochondrial impairment might substantially impact CNTs-induced reproductive system injury and sperm toxicity. The results can also be used to establish environmental standards for CNT consumption by mammals, produce new chemicals for controlling the rodent populations, and develop therapeutic approaches against CNTs-associated reproductive anomalies in the males exposed daily to these nanoparticles.

17.
Biol Trace Elem Res ; 195(1): 125-134, 2020 May.
Article in English | MEDLINE | ID: mdl-31313246

ABSTRACT

Exposure to arsenic (AS) causes abnormalities in the reproductive system; however, the precise cellular pathway of AS toxicity on steroidogenesis in developing F1-male mice has not been clearly defined. In this study, paternal mice were treated with arsenic trioxide (As2O3; 0, 0.2, 2, and 20 ppm in drinking water) from 5 weeks before mating until weaning and continued for male offspring from weaning until maturity (in vivo). Additionally, Leydig cells (LCs) were isolated from the testes of sacrificed F1-intact mature male mice and incubated with As2O3 (0, 1, 10, and 100 µM) for 48 h (in vitro). Biomarkers of mitochondrial impairment, oxidative stress, and several steroidogenic genes, including the steroidogenic acute regulatory (StAR) protein, cytochrome P450 side-chain cleaving enzyme (P450scc; Cyp11a), 3ß-hydroxysteroid dehydrogenase (3ß-HSD), and 17ß-hydroxysteroid dehydrogenase (17ß-HSD), were evaluated. High doses of As2O3 interrupted testosterone (T) biosynthesis and T-related gene expression in these experimental models. Altogether, overconsumption of As2O3 can cause testicular and LC toxicity through mitochondrial-related pathways and oxidative stress indices as well as downregulation of androgenic-related genes in mice and isolated LCs. These results could lead to the development of preventive/therapeutic procedures against As2O3-induced reproductive toxicity. Graphical Abstract Mohammad Mehdi Ommati and Reza Heidari contributed equally to this study.


Subject(s)
17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Arsenic Trioxide/pharmacology , Cholesterol Side-Chain Cleavage Enzyme/antagonists & inhibitors , Down-Regulation/drug effects , Mitochondria/drug effects , Testosterone/antagonists & inhibitors , 17-Hydroxysteroid Dehydrogenases/genetics , 17-Hydroxysteroid Dehydrogenases/metabolism , Administration, Oral , Animals , Arsenic Trioxide/administration & dosage , Cell Survival/drug effects , Cholesterol Side-Chain Cleavage Enzyme/genetics , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Leydig Cells/drug effects , Leydig Cells/metabolism , Male , Mice , Mice, Inbred BALB C , Mitochondria/metabolism , Oxidative Stress/drug effects , Testosterone/metabolism
18.
Drug Res (Stuttg) ; 70(1): 49-56, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31671464

ABSTRACT

BACKGROUND: Ifosfamide (IFO) is an alkylating agent administered against different types of malignancies. Several cases of renal injury and serum electrolytes disturbances have been reported in IFO-treated patients. Oxidative stress and mitochondrial dysfunction are suspected of being involved in the mechanism of IFO nephrotoxicity. Carnosine is a dipeptide which its antioxidant and mitochondria protecting properties have been mentioned in different experimental models. The current study aimed to evaluate the nephroprotective properties of carnosine against IFO-induced renal injury. METHODS: Rats were treated with IFO (50 mg/kg, i.p) alone or in combination with carnosine. Serum and urine biomarkers of renal injury in addition to kidney markers of oxidative stress were evaluated. Moreover, kidney mitochondria were isolated, and some mitochondrial indices were assessed. RESULTS: Elevated serum creatinine and BUN, hypokalemia, and hypophosphatemia, in addition, to an increase in urine glucose, protein, γ-GT, and alkaline phosphatase (ALP), were evident in IFO-treated animals. IFO also caused an increase in kidney reactive oxygen species (ROS) and lipid peroxidation (LPO). Renal GSH levels and antioxidant capacity were also depleted with IFO therapy. Mitochondrial dehydrogenase activity, GSH level, membrane potential, and ATP content were decreased while mitochondrial LPO and permeabilization were increased in IFO group. Carnosine (250 and 500 mg/kg, i.p) mitigated IFO-induced oxidative stress and mitochondrial impairment in renal tissue. CONCLUSION: Our data suggest mitochondrial dysfunction and oxidative stress as fundamental mechanisms of renal injury induced by IFO. On the other hand, carnosine supplementation protected kidneys against IFO-induced injury through regulating mitochondrial function and mitigating oxidative stress.


Subject(s)
Acute Kidney Injury/prevention & control , Antineoplastic Agents, Alkylating/adverse effects , Antioxidants/administration & dosage , Carnosine/administration & dosage , Ifosfamide/adverse effects , Acute Kidney Injury/chemically induced , Animals , Antineoplastic Agents, Alkylating/administration & dosage , Disease Models, Animal , Humans , Ifosfamide/administration & dosage , Injections, Intraperitoneal , Kidney/cytology , Kidney/drug effects , Lipid Peroxidation/drug effects , Male , Mitochondria/drug effects , Mitochondria/pathology , Oxidative Stress/drug effects , Rats , Reactive Oxygen Species/metabolism
19.
Toxicol Lett ; 316: 60-72, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31520699

ABSTRACT

Cholestasis is a significant decrease in bile flow. The liver is the primary organ affected by cholestasis. Chronic cholestasis could entail to tissue fibrotic changes and liver cirrhosis. Other organs, including heart, kidneys, nervous system, skeletal muscles, as well as the reproductive system, might also be affected during cholestasis. Although the cholestasis-associated pathological and biochemical alterations in organs such as liver have been widely investigated, there is little information about complications such as cholestasis-induced reproductive toxicity. The current study aimed to evaluate the pathologic effects of cholestasis on reproductive organs in both male and female animals. Rats underwent bile duct ligation (BDL) surgery. Markers of reproductive toxicity, including serum hormonal changes, tissue histopathological alterations, biomarkers of oxidative stress, and markers of mitochondrial impairment, were evaluated. Increased serum markers of liver injury and elevated level of cytotoxic molecules such as bile acids and bilirubin were evident in BDL animals. On the other hand, the serum level of hormones such as testosterone was suppressed in BDL rats. Significant histopathological alterations were also evident in the testis and ovary of BDL animals. A significant increase in oxidative stress markers, including ROS formation, lipid peroxidation, protein carbonylation, and depleted glutathione and antioxidant reservoirs were also detected in BDL rats. Moreover, mitochondrial depolarization decreased dehydrogenases activity, and depleted ATP content was detected in sperm isolated from the BDL group. These data indicate that cholestasis-associated reproductive toxicity in male and female rats is restrictedly coupled with severe oxidative stress and mitochondrial impairment.


Subject(s)
Cholestasis/metabolism , Mitochondria/metabolism , Ovary/metabolism , Oxidative Stress , Reproduction , Spermatozoa/metabolism , Testis/metabolism , Animals , Cholestasis/etiology , Cholestasis/physiopathology , Common Bile Duct/surgery , Disease Models, Animal , Female , Ligation , Lipid Peroxidation , Male , Mitochondria/pathology , Ovary/pathology , Ovary/physiopathology , Protein Carbonylation , Rats, Sprague-Dawley , Risk Assessment , Testis/pathology , Testis/physiopathology
20.
Biomed Pharmacother ; 103: 75-86, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29635131

ABSTRACT

Betaine is a derivative of the amino acid glycine widely investigated for its hepatoprotective properties against alcoholism. The protective properties of betaine in different other experimental models also have been documented. On the other hand, the exact cellular mechanism of cytoprotection provided by betaine is obscure. The current study was designed to evaluate the hepatoprotective effects of betaine and its potential mechanisms of hepatoprotection in two animal models of acute and chronic liver injury. Bile duct ligation (BDL) was used as a model of chronic liver injury and thioacetamide (TAA)-induced hepatotoxicity was applied as the acute liver injury model. Severe increase in serum markers of liver tissue damage along with significant liver tissue histopathological changes were evident in both acute and chronic models of hepatic injury. It was also found that tissue markers of oxidative stress were significantly increased in BDL and TAA-treated animals. Moreover, liver mitochondrial indices of functionality were deteriorated in both investigated models. Betaine supplementation (10 and 50 mg/kg, i.p) ameliorated hepatic injury as judged by decreased liver tissue histopathological alterations, a significant decrease in tissue markers of oxidative stress, and mitigation of serum biomarkers of hepatotoxicity. On the other hand, betaine (10 and 50 mg/kg, i.p) protected hepatocytes mitochondria in both chronic and acute models of hepatotoxicity. These data indicate that the antioxidative and mitochondria regulating properties of betaine could play a primary role in its mechanisms of hepatoprotection.


Subject(s)
Betaine/pharmacology , Liver/injuries , Liver/pathology , Mitochondria/metabolism , Oxidative Stress/drug effects , Protective Agents/pharmacology , Acute Disease , Animals , Bile Ducts/pathology , Biomarkers/blood , Chronic Disease , Disease Models, Animal , Ligation , Male , Mitochondria/drug effects , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...