Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(13)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37444920

ABSTRACT

A prosthesis is loaded by forces and torques exerted by its wearer, the amputee, and should withstand instances of peak loads without failure. Traditionally, strong prosthetic sockets were made using a composite with a variety of reinforcing fibres, such as glass, carbon, and Kevlar. Amputees in less-resourced nations can lack access to composite prosthetic sockets due to their unavailability or prohibitive cost. Therefore, this study investigates the feasibility of polyethylene terephthalate (PET) fibre-reinforced composites as a low-cost sustainable composite for producing functional lower-limb prosthetic sockets. Two types of these composites were manufactured using woven and knitted fabric with a vacuum-assisted resin transfer moulding (VARTM) process. For direct comparison purposes, traditional prosthetic-socket materials were also manufactured from laminated composite (glass-fibre-reinforced (GFRP)), monolithic thermoplastic (polypropylene (PP) and high-density polyethylene (HDPE)) were also manufactured. Dog-bone-shaped specimens were cut from flat laminates and monolithic thermoplastic to evaluate their mechanical properties following ASTM standards. The mechanical properties of PET-woven and PET-knitted composites were found to have demonstrated to be considerably superior to those of traditional socket materials, such as PP and HDPE. All the materials were also tested in the socket form using a bespoke test rig reproducing forefoot loading according to the ISO standard 10328. The static structural test of sockets revealed that all met the target load-bearing capacity of 125 kg. Like GFRP, the PETW and PETK sockets demonstrated higher deformation and stiffness resistance than their monolithic counterparts made from PP and HDPE. As a result, it was concluded that the PET-based composite could replace monolithic socket materials in producing durable and affordable prostheses.

2.
Acta Bioeng Biomech ; 19(1): 55-62, 2017.
Article in English | MEDLINE | ID: mdl-28552924

ABSTRACT

PURPOSE: Bone drilling is a major part of orthopaedic surgery performed during the internal fixation of fractured bones. At present, information related to drilling force, drilling torque, rate of drill-bit penetration and drill-bit rotational speed is not available to orthopaedic surgeons, clinicians and researchers as bone drilling is performed manually. METHODS: This study demonstrates that bone drilling force data if recorded in-vivo, during the repair of bone fractures, can provide information about the quality of the bone. To understand the variability and anisotropic behaviour of cortical bone tissue, specimens cut from three anatomic positions of pig and bovine were investigated at the same drilling speed and feed rate. RESULTS: The experimental results showed that the drilling force does not only vary from one animal bone to another, but also vary within the same bone due to its changing microstructure. Drilling force does not give a direct indication of bone quality; therefore it has been correlated with screw pull-out force to provide a realistic estimation of the bone quality. A significantly high value of correlation (r2 = 0.93 for pig bones and r2 = 0.88 for bovine bones) between maximum drilling force and normalised screw pull-out strength was found. CONCLUSIONS: The results show that drilling data can be used to indicate bone quality during orthopaedic surgery.


Subject(s)
Bone Density/physiology , Bone Screws , Densitometry/instrumentation , Densitometry/methods , Femur/physiology , Femur/surgery , Materials Testing/methods , Osteotomy/methods , Animals , Cattle , Device Removal/methods , Friction , In Vitro Techniques , Materials Testing/instrumentation , Reproducibility of Results , Sensitivity and Specificity , Species Specificity , Stress, Mechanical , Swine , Tensile Strength , Torque
3.
J Voice ; 31(6): 669-674, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28433346

ABSTRACT

OBJECTIVE: This study mapped the variation in tissue elasticity of the subglottic mucosa, applied these data to provide initial models of the likely deformation of the mucosa during the myoelastic cycle, and hypothesized as to the impact on the process of phonation. STUDY DESIGN: Six donor human larynges were dissected along the sagittal plane to expose the vocal folds and subglottic mucosa. A linear skin rheometer was used to apply a controlled shear force, and the resultant displacement was measured. These data provided a measure of the stress/strain characteristics of the tissue at each anatomic point. A series of measurements were taken at 2-mm interval inferior of the vocal folds, and the change in elasticity was determined. RESULTS: It was found that the elasticity of the mucosa in the subglottic region increased linearly with distance from the vocal folds in all 12 samples. A simple deformation model indicated that under low pressure conditions the subglottic mucosa will deform to form a cone, which could result in a higher velocity, thus amplifying the low pressure effect resulting from the Venturi principle, and could assist in maintaining laminar flow. CONCLUSIONS: This study indicated that the deformation of the subglottic mucosa could play a significant role in the delivery of a low pressure airflow over the vocal folds. A large scale study will now be undertaken to secure more data to evaluate this hypothesis, and using computational fluid dynamics based on actual three-dimensional structure obtained from computed tomography scans the aerodynamics of this region will be investigated.


Subject(s)
Phonation , Respiratory Mucosa/physiology , Vocal Cords/physiology , Aged , Aged, 80 and over , Biomechanical Phenomena , Cadaver , Elasticity , Female , Humans , Male , Middle Aged , Models, Anatomic , Patient-Specific Modeling , Pressure , Respiratory Mucosa/diagnostic imaging , Rheology , Time Factors , Tomography, X-Ray Computed , Vibration , Vocal Cords/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...