Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 81(19): 6710-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26187957

ABSTRACT

Symbioses between leguminous plants and soil bacteria known as rhizobia are of great importance to agricultural production and nitrogen cycling. While these mutualistic symbioses can involve a wide range of rhizobia, some legumes exhibit incompatibility with specific strains, resulting in ineffective nodulation. The formation of nodules in soybean plants (Glycine max) is controlled by several host genes, which are referred to as Rj genes. The soybean cultivar BARC2 carries the Rj4 gene, which restricts nodulation by specific strains, including Bradyrhizobium elkanii USDA61. Here we employed transposon mutagenesis to identify the genetic locus in USDA61 that determines incompatibility with soybean varieties carrying the Rj4 allele. Introduction of the Tn5 transposon into USDA61 resulted in the formation of nitrogen fixation nodules on the roots of soybean cultivar BARC2 (Rj4 Rj4). Sequencing analysis of the sequence flanking the Tn5 insertion revealed that six genes encoding a putative histidine kinase, transcriptional regulator, DNA-binding transcriptional activator, helix-turn-helix-type transcriptional regulator, phage shock protein, and cysteine protease were disrupted. The cysteine protease mutant had a high degree of similarity with the type 3 effector protein XopD of Xanthomonas campestris. Our findings shed light on the diverse and complicated mechanisms that underlie these highly host-specific interactions and indicate the involvement of a type 3 effector in Rj4 nodulation restriction, suggesting that Rj4 incompatibility is partly mediated by effector-triggered immunity.


Subject(s)
Bacterial Proteins/genetics , Bradyrhizobium/genetics , Glycine max/genetics , Plant Proteins/genetics , Plant Roots/microbiology , Alleles , Bacterial Proteins/metabolism , Bradyrhizobium/physiology , Gene Expression Regulation, Bacterial , Molecular Sequence Data , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Glycine max/microbiology , Glycine max/physiology , Symbiosis
2.
Am J Physiol Cell Physiol ; 296(2): C306-16, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19073898

ABSTRACT

Stimulation of numerous G protein-coupled receptors leads to the elevation of intracellular concentrations of cAMP, which subsequently activates the PKA pathway. Specificity of the PKA signaling module is determined by a sophisticated subcellular targeting network that directs the spatiotemporal activation of the kinase. This specific compartmentalization mechanism occurs through high-affinity interactions of PKA with A-kinase anchoring proteins (AKAPs), the role of which is to target the kinase to discrete subcellular microdomains. Recently, a peptide designated "AKAPis" has been proposed to competitively inhibit PKA-AKAP interactions in vitro. We therefore sought to characterize a cell-permeable construct of the AKAPis inhibitor and use it as a tool to characterize the impact of PKA compartmentalization by AKAPs. Using insulin-secreting pancreatic beta-cells (INS-1 cells), we showed that TAT-AKAPis (at a micromolar range) dose dependently disrupted a significant fraction of endogenous PKA-AKAP interactions. Immunoflurescent analysis also indicated that TAT-AKAPis significantly affected PKA subcellular localization. Furthermore, TAT-AKAPis markedly attenuated glucagon-induced phosphorylations of p44/p42 MAPKs and cAMP response element binding protein, which are downstream effectors of PKA. In parallel, TAT-AKAPis dose dependently inhibited the glucagon-induced potentiation of insulin release. Therefore, AKAP-mediated subcellular compartmentalization of PKA represents a key mechanism for PKA-dependent phosphorylation events and potentiation of insulin secretion in intact pancreatic beta-cells. More interestingly, our data highlight the effectiveness of the cell-permeable peptide-mediated approach to monitoring in cellulo PKA-AKAP interactions and delineating PKA-dependent phosphorylation events underlying specific cellular responses.


Subject(s)
A Kinase Anchor Proteins/metabolism , Cell Membrane Permeability , Cyclic AMP-Dependent Protein Kinase RIIalpha Subunit/metabolism , Insulin-Secreting Cells/enzymology , Nuclear Proteins/metabolism , Peptide Fragments/metabolism , Signal Transduction , Animals , Cell Line , Cyclic AMP/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Fluorescent Antibody Technique , Glucagon/metabolism , Glucose/metabolism , Immunoprecipitation , Insulin/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation , Protein Binding , Protein Transport , Rats , Time Factors , tat Gene Products, Human Immunodeficiency Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...