Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 216(Pt 21): 4109-23, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24133153

ABSTRACT

Using implanted archival tags, we examined the effects of meal caloric value, food type (sardine or squid) and ambient temperature on the magnitude and duration of the heat increment of feeding in three captive juvenile Pacific bluefin tuna. The objective of our study was to develop a model that can be used to estimate energy intake in wild fish of similar body mass. Both the magnitude and duration of the heat increment of feeding (measured by visceral warming) showed a strong positive correlation with the caloric value of the ingested meal. Controlling for meal caloric value, the extent of visceral warming was significantly greater at lower ambient temperature. The extent of visceral warming was also significantly higher for squid meals compared with sardine meals. By using a hierarchical Bayesian model to analyze our data and treating individuals as random effects, we demonstrate how increases in visceral temperature can be used to estimate the energy intake of wild Pacific bluefin tuna of similar body mass to the individuals used in our study.


Subject(s)
Body Temperature , Energy Intake , Physiology/methods , Tuna/physiology , Animals , Bayes Theorem , Decapodiformes , Diet , Fishes , Mexico , Models, Biological , Postprandial Period , Temperature
2.
J Exp Biol ; 216(Pt 17): 3208-14, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23661777

ABSTRACT

The bluefin tuna heart remains at ambient water temperature (Ta) but must supply blood to warm regions of the body served by countercurrent vascular heat exchangers. Despite this unusual physiology, inherent difficulties have precluded an understanding of the cardiovascular responses to Ta in free-swimming bluefin tunas. We measured the heart rate (f(H)) responses of two captive Pacific bluefin tunas (Thunnus orientalis; 9.7 and 13.3 kg) over a cumulative period of 40 days. Routine f(H) during fasting in the holding tank at a Ta of 20°C was 45.1±8.0 and 40.7±6.5 beats min(-1) for Tuna 1 and Tuna 2, respectively. f(H) decreased in each fish with a Q10 temperature coefficient of 2.6 (Tuna 1) and 3.1 (Tuna 2) as Ta in the tank was slowly decreased to 15°C (~0.4°C h(-1)), despite a gradual increase in swimming speed. The same thermal challenge during digestion revealed similar thermal dependence of f(H) and indicated that the rate of visceral cooling is not buffered by the heat increment of feeding. Acutely decreasing Ta from 20 to 10°C while Tuna 1 swam in a tunnel respirometer caused a progressive increase in tail-beat frequency and oxygen consumption rate (M(O2)). f(H) of this fish decreased with a Q10 of 2.7 as Ta decreased between 20 and 15°C, while further cooling to 10°C saw a general plateau in f(H) around 35 beats min(-1) with a Q10 of 1.3. A discussion of the relationships between f(H), and haemoglobin-oxygen binding sheds further light on how bluefin cardiorespiratory systems function in a changing thermal environment.


Subject(s)
Heart Rate , Oxygen Consumption , Tuna/physiology , Animals , Pacific Ocean , Swimming , Temperature
3.
J Exp Biol ; 213(Pt 14): 2379-85, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20581267

ABSTRACT

Specific dynamic action (SDA) is defined as the energy expended during ingestion, digestion, absorption and assimilation of a meal. This study presents the first data on the SDA response of individual tunas of any species. Juvenile Pacific bluefin tunas (Thunnus orientalis; body mass 9.7-11.0 kg; N=7) were individually fed known quantities of food consisting primarily of squid and sardine (meal energy range 1680-8749 kJ, approximately 4-13% of tuna body mass). Oxygen consumption rates (M(O2)) were measured in a swim tunnel respirometer during the postprandial period at a swimming speed of 1 body length (BL) s(-1) and a water temperature of 20 degrees C. was markedly elevated above routine levels in all fish following meal consumption [routine metabolic rate (RMR)=174+/-9 mg kg(-1) h(-1)]. The peak M(O2) during the SDA process ranged from 250 to 440 mg kg(-1) h(-1) (1.5-2.3 times RMR) and was linearly related to meal energy content. The duration of the postprandial increment in M(O2) ranged from 21 h to 33 h depending upon meal energy content. Consequently, the total energy used in SDA increased linearly with meal energy and ranged from 170 kJ to 688 kJ, such that the SDA process accounted for 9.2+/-0.7% of ingested energy across all experiments. These values suggest rapid and efficient food conversion in T. orientalis in comparison with most other fishes. Implanted archival temperature tags recorded the increment in visceral temperature (T(V)) in association with SDA. M(O2) returned to routine levels at the end of the digestive period 2-3 h earlier than T(V). The qualitative patterns in M(O2) and T(V) during digestion were similar, strengthening the possibility that archival measurements of T(V) can provide new insight into the energetics and habitat utilization of free-swimming bluefin in the natural environment. Despite efficient food conversion, SDA is likely to represent a significant component of the daily energy budget of wild bluefin tunas due to a regular and high ingestion of forage.


Subject(s)
Energy Metabolism/physiology , Postprandial Period/physiology , Swimming/physiology , Tuna/physiology , Animals , Body Temperature , Eating , Feeding Behavior/physiology , Intestinal Absorption/physiology , Oxygen Consumption/physiology
4.
Science ; 293(5533): 1310-4, 2001 Aug 17.
Article in English | MEDLINE | ID: mdl-11509729

ABSTRACT

The deployment of electronic data storage tags that are surgically implanted or satellite-linked provides marine researchers with new ways to examine the movements, environmental preferences, and physiology of pelagic vertebrates. We report the results obtained from tagging of Atlantic bluefin tuna with implantable archival and pop-up satellite archival tags. The electronic tagging data provide insights into the seasonal movements and environmental preferences of this species. Bluefin tuna dive to depths of >1000 meters and maintain a warm body temperature. Western-tagged bluefin tuna make trans-Atlantic migrations and they frequent spawning grounds in the Gulf of Mexico and eastern Mediterranean. These data are critical for the future management and conservation of bluefin tuna in the Atlantic.


Subject(s)
Behavior, Animal , Ecosystem , Tuna/physiology , Animal Identification Systems , Animals , Atlantic Ocean , Body Temperature , Conservation of Natural Resources , Diving , Female , Fisheries , Male , Reproduction , Seasons , Swimming , Temperature
5.
Proc Natl Acad Sci U S A ; 95(16): 9384-9, 1998 Aug 04.
Article in English | MEDLINE | ID: mdl-9689089

ABSTRACT

The movements of Atlantic bluefin tuna (Thunnus thynnus thynnus) have captured the interest of scientists and fishers since the time of Aristotle. This tuna is unique among bony fish for maintaining elevated body temperatures (21 degrees C above ambient) and attaining large size (up to 750 kg). We describe here the use of a pop-off satellite tag, for investigating the Atlantic-wide movements and potential stock overlap of western and eastern Atlantic bluefin tuna. The tag also archives data on water temperatures. The objectives of this study were to evaluate the effectiveness of the technology, study the movements of Atlantic bluefin tuna, examine their thermal niche, and assess survivorship of tagged fish. The pop-off satellite technology provides data independent of commercial fisheries that, when deployed in sufficient quantity, should permit a critical test of the stock structure hypotheses for Atlantic bluefin tuna.

SELECTION OF CITATIONS
SEARCH DETAIL
...