Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cogn Neurodyn ; 17(1): 63-104, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36704633

ABSTRACT

We conducted (I) 18 event-related potential (ERP) field tests to detect concealed information regarding major terrorist crimes and other real-world crimes and (II) 5 ERP tests regarding participation in a classified counterterrorism operation. This study is a test of the brain fingerprinting scientific standards hypothesis: that a specific set of methods for event-related potential (ERP) concealed information tests (CIT) known as the brain fingerprinting scientific standards provide the sufficient conditions to produce less than 1% error rate and greater than 95% median statistical confidence for individual determinations of whether the tested information is stored in each subject's brain. All previous published results in all laboratories are compatible with this hypothesis. We recorded P300 and P300-MERMER ERP responses to visual text stimuli of three types: targets contain known information, irrelevants contain unknown/irrelevant information, and probes contain the situation-relevant information to be tested, known only to the perpetrator and investigators. Classification CIT produced significantly better results than comparison CIT, independent of classification criteria. Classification CIT had 0% error rate; comparison CIT had 6% error rate. As in previous studies, classification-CIT median statistical confidences were approximately 99%, whereas comparison CIT statistical confidences were no better than chance for information-absent (IA) subjects (who did not know the tested information). Over half of the comparison-CIT IA determinations were invalid due to a less-than-chance computed probability of being correct. Experiment (I) results for median statistical confidence: Classification CIT, IA subjects: 98.6%; information-present (IP) subjects (who know the tested information): 99.9%; comparison CIT, IA subjects: 48.7%; IP subjects: 99.5%. Experiment (II) results (Classification CIT): error rate 0%, median statistical confidence 96.6%. Countermeasures had no effect on the classification CIT. These results, like all previous results in our laboratory and all others, support the brain fingerprinting scientific standards hypothesis and indicate that the classification CIT is a necessary condition for a reliable, accurate, and valid brainwave-based CIT. The comparison CIT, by contrast, produces high error rates and IA statistical confidences no better than chance. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-022-09795-1.

2.
Front Neurosci ; 8: 410, 2014.
Article in English | MEDLINE | ID: mdl-25565941

ABSTRACT

A classification concealed information test (CIT) used the "brain fingerprinting" method of applying P300 event-related potential (ERP) in detecting information that is (1) acquired in real life and (2) unique to US Navy experts in military medicine. Military medicine experts and non-experts were asked to push buttons in response to three types of text stimuli. Targets contain known information relevant to military medicine, are identified to subjects as relevant, and require pushing one button. Subjects are told to push another button to all other stimuli. Probes contain concealed information relevant to military medicine, and are not identified to subjects. Irrelevants contain equally plausible, but incorrect/irrelevant information. Error rate was 0%. Median and mean statistical confidences for individual determinations were 99.9% with no indeterminates (results lacking sufficiently high statistical confidence to be classified). We compared error rate and statistical confidence for determinations of both information present and information absent produced by classification CIT (Is a probe ERP more similar to a target or to an irrelevant ERP?) vs. comparison CIT (Does a probe produce a larger ERP than an irrelevant?) using P300 plus the late negative component (LNP; together, P300-MERMER). Comparison CIT produced a significantly higher error rate (20%) and lower statistical confidences: mean 67%; information-absent mean was 28.9%, less than chance (50%). We compared analysis using P300 alone with the P300 + LNP. P300 alone produced the same 0% error rate but significantly lower statistical confidences. These findings add to the evidence that the brain fingerprinting methods as described here provide sufficient conditions to produce less than 1% error rate and greater than 95% median statistical confidence in a CIT on information obtained in the course of real life that is characteristic of individuals with specific training, expertise, or organizational affiliation.

3.
Cogn Neurodyn ; 7(4): 263-99, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23869200

ABSTRACT

Brain fingerprinting detects concealed information stored in the brain by measuring brainwave responses. We compared P300 and P300-MERMER event-related brain potentials for error rate/accuracy and statistical confidence in four field/real-life studies. 76 tests detected presence or absence of information regarding (1) real-life events including felony crimes; (2) real crimes with substantial consequences (either a judicial outcome, i.e., evidence admitted in court, or a $100,000 reward for beating the test); (3) knowledge unique to FBI agents; and (4) knowledge unique to explosives (EOD/IED) experts. With both P300 and P300-MERMER, error rate was 0 %: determinations were 100 % accurate, no false negatives or false positives; also no indeterminates. Countermeasures had no effect. Median statistical confidence for determinations was 99.9 % with P300-MERMER and 99.6 % with P300. Brain fingerprinting methods and scientific standards for laboratory and field applications are discussed. Major differences in methods that produce different results are identified. Markedly different methods in other studies have produced over 10 times higher error rates and markedly lower statistical confidences than those of these, our previous studies, and independent replications. Data support the hypothesis that accuracy, reliability, and validity depend on following the brain fingerprinting scientific standards outlined herein.

4.
Cogn Neurodyn ; 7(2): 159-66, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23494087

ABSTRACT

Farwell in Cogn Neurodyn 6:115-154, (2012) reviewed all research on brainwave-based detection of concealed information published in English, including the author's laboratory and field research. He hypothesized that specific methods are sufficient to obtain less than 1 % error rate and high statistical confidence, and some of them are necessary. Farwell proposed 20 brain fingerprinting scientific standards embodying these methods. He documented the fact that all previous research and data are compatible with these hypotheses and standards. Farwell explained why failure to meet these standards resulted in decrements in performance of other, alternative methods. Meijer et al. criticized Farwell in Cogn Neurodyn 6:115-154, (2012) and Farwell personally. The authors stated their disagreement with Farwell's hypotheses, but did not cite any data that contradict the three hypotheses, nor did they propose alternative hypotheses or standards. Meijer et al. made demonstrable misstatements of fact, including false ad hominem statements about Farwell, and impugned Farwell's motives and character. We provide supporting evidence for Farwell's three hypotheses, clarify several issues, correct Meijer et al.'s misstatements of fact, and propose that the progress of science is best served by practicing science: designing and conducting research to test and as necessary modify the proposed hypotheses and standards that explain the existing data.

5.
Cogn Neurodyn ; 6(2): 115-54, 2012 Apr.
Article in English | MEDLINE | ID: mdl-23542949

ABSTRACT

Brain fingerprinting (BF) detects concealed information stored in the brain by measuring brainwaves. A specific EEG event-related potential, a P300-MERMER, is elicited by stimuli that are significant in the present context. BF detects P300-MERMER responses to words/pictures relevant to a crime scene, terrorist training, bomb-making knowledge, etc. BF detects information by measuring cognitive information processing. BF does not detect lies, stress, or emotion. BF computes a determination of "information present" or "information absent" and a statistical confidence for each individual determination. Laboratory and field tests at the FBI, CIA, US Navy and elsewhere have resulted in 0% errors: no false positives and no false negatives. 100% of determinations made were correct. 3% of results have been "indeterminate." BF has been applied in criminal cases and ruled admissible in court. Scientific standards for BF tests are discussed. Meeting the BF scientific standards is necessary for accuracy and validity. Alternative techniques that failed to meet the BF scientific standards produced low accuracy and susceptibility to countermeasures. BF is highly resistant to countermeasures. No one has beaten a BF test with countermeasures, despite a $100,000 reward for doing so. Principles of applying BF in the laboratory and the field are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...