Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(24)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339335

ABSTRACT

Analysis of dense Potassium Sodium Niobate (KNN) ceramic obtained by hot pressing (HP) method at 1100 °C are presented in this paper. The synthesis of KNN-based piezoelectrics meets the following challenges-low density of material, uncontrolled K/Na ratio, multiphase composition and formation of different KNN structures. The classical hot pressing approach results in contamination by carbon originating from graphite molds. The proposed hexagonal Boron Carbide (h-BN) layer between green sample and graphite mold could protect samples from carbon contamination. Additionally, the presence of h-BN may decrease the formation of oxygen vacancies, which allows us to maintain the semiconductor features of the KNN structure. Remaining issues were addressed with the addition of excess Na and Er2O3 doping. The results showed that excess Na addition allowed us to compensate evaporation of sodium during the synthesis and sintering. Er2O3 was added as sintering aid to limit abnormal grain growth caused by h-BN addition. The modification of amount of Na and Er2O3 addition resulted in high purity KNN samples with tetragonal structure and apparent density higher than 97%. Finally, piezoelectric features of prepared dense samples were measured and presented.

2.
Micron ; 78: 73-78, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26277084

ABSTRACT

A set of cubic zirconia samples were investigated using 3-dimensional electron backscatter diffraction (3D EBSD) to analyze the grain structure, grain boundary networks and pore morphology. 3D EBSD is a variation of conventional EBSD, whereby a focused ion beam (FIB) is used in a dual beam scanning electron microscope (SEM) i.e. FIB-SEM to mill away material and to create 'serial sections' through the material being analyzed. Each new surface revealed is subject to an EBSD scan, which continues sequentially until a desired volume of material has been removed. In this manner, many consecutive 2D EBSD scans can be rendered in 3D to gain a greater insight of microstructural features and parameters. The three samples were examined in order to determine the effect of differences in the manufacturing process used for each. For each sample, a volume of ca. 15,000 µm(3) was studied. The analysis of several microstructure parameters revealed a strong dependence on manufacturing conditions. Subsequently, the results of 3D EBSD analysis were compared to conventional 2D EBSD. Significant differences between the values of microstructure parameters determined by 2D and 3D EBSD were observed.

3.
J Struct Biol ; 183(3): 368-376, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23933391

ABSTRACT

Nacre tablets of mollusks develop two kinds of features when either the calcium carbonate or the organic portions are removed: (1) parallel lineations (vermiculations) formed by elongated carbonate rods, and (2) hourglass patterns, which appear in high relief when etched or in low relief if bleached. In untreated tablets, SEM and AFM data show that vermiculations correspond to aligned and fused aragonite nanogloblules, which are partly surrounded by thin organic pellicles. EBSD mapping of the surfaces of tablets indicates that the vermiculations are invariably parallel to the crystallographic a-axis of aragonite and that the triangles are aligned with the b-axis and correspond to the advance of the {010} faces during the growth of the tablet. According to our interpretation, the vermiculations appear because organic molecules during growth are expelled from the a-axis, where the Ca-CO3 bonds are the shortest. In this way, the subunits forming nacre merge uninterruptedly, forming chains parallel to the a-axis, whereas the organic molecules are expelled to the sides of these chains. Hourglass patterns would be produced by preferential adsorption of organic molecules along the {010}, as compared to the {100} faces. A model is presented for the nanostructure of nacre tablets. SEM and EBSD data also show the existence within the tablets of nanocrystalline units, which are twinned on {110} with the rest of the tablet. Our study shows that the growth dynamics of nacre tablets (and bioaragonite in general) results from the interaction at two different and mutually related levels: tablets and nanogranules.


Subject(s)
Bivalvia/ultrastructure , Nacre/chemistry , Animals , Bivalvia/metabolism , Crystallization , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nacre/metabolism , Surface Properties
4.
J R Soc Interface ; 10(86): 20130425, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-23804442

ABSTRACT

The calcitic prismatic units forming the outer shell of the bivalve Pinctada margaritifera have been analysed using scanning electron microscopy-electron back-scatter diffraction, transmission electron microscopy and atomic force microscopy. In the initial stages of growth, the individual prismatic units are single crystals. Their crystalline orientation is not consistent but rather changes gradually during growth. The gradients in crystallographic orientation occur mainly in a direction parallel to the long axis of the prism, i.e. perpendicular to the shell surface and do not show preferential tilting along any of the calcite lattice axes. At a certain growth stage, gradients begin to spread and diverge, implying that the prismatic units split into several crystalline domains. In this way, a branched crystal, in which the ends of the branches are independent crystalline domains, is formed. At the nanometre scale, the material is composed of slightly misoriented domains, which are separated by planes approximately perpendicular to the c-axis. Orientational gradients and splitting processes are described in biocrystals for the first time and are undoubtedly related to the high content of intracrystalline organic molecules, although the way in which these act to induce the observed crystalline patterns is a matter of future research.


Subject(s)
Animal Shells/metabolism , Animal Shells/ultrastructure , Calcium Carbonate/metabolism , Pinctada/metabolism , Pinctada/ultrastructure , Animals , Microscopy, Electron, Transmission/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...