Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Appl Spectrosc ; 77(12): 1393-1400, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37908083

ABSTRACT

Protein A affinity chromatography is a key step in isolation of biotherapeutics (BTs) containing fragment crystallizable regions, including monoclonal and bispecific antibodies. Dynamic binding capacity (DBC) analysis assesses how much BT will bind to a protein A column. DBC reduces with column usage, effectively reducing the amount of recovered product over time. Drug regulatory bodies mandate chromatography resin lifetime for BT isolation, through measurement of parameters including DBC, so this feature is carefully monitored in industrial purification pipelines. High-performance affinity chromatography (HPAC) is typically used to assess the concentration of BT, which when loaded to the column results in significant breakthrough of BT in the flowthrough. HPAC gives an accurate assessment of DBC and how this changes over time but only reports on protein concentration, requires calibration for each new BT analyzed, and can only be used offline. Here we utilized Raman spectroscopy and revealed that this approach is at least as effective as both HPAC and ultraviolet chromatogram methods at monitoring DBC of protein A resins. In addition to reporting on protein concentration, the chemical information in the Raman spectra provides information on aggregation status and protein structure, providing extra quality controls to industrial bioprocessing pipelines. In combination with partial least square (PLS) analysis, Raman spectroscopy can be used to determine the DBC of a BT without prior calibration. Here we performed Raman analysis offline in a 96-well plate format, however, it is feasible to perform this inline. This study demonstrates the power of Raman spectroscopy as a significantly improved approach to DBC monitoring in industrial pipelines.


Subject(s)
Proteins , Spectrum Analysis, Raman , Chromatography, Affinity/methods , Proteins/chemistry , Staphylococcal Protein A/chemistry , Calibration
2.
Anal Chem ; 94(45): 15703-15710, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36318727

ABSTRACT

Monoclonal antibodies (mAbs) are used extensively as biotherapeutics for chronic and acute conditions. Production of mAbs is lengthy and expensive, with protein A affinity capture the most costly step, due both to the nature of the resin and its marked reduction in binding capacity with repeated use. Our previous studies using in situ ATR-FTIR spectroscopy indicated that loss in protein A binding capacity is not the result of leaching or degradation of protein A ligand, suggesting fouling is the principal cause. Here we explore binding behavior and resin capacity loss using Raman spectroscopy. Our data reveal a distinct Raman spectral fingerprint for mAb bound to the protein A ligand of MabSelect SuRe. The results show that the drop in static binding capacity (SBC) previously observed for used protein A resin is discernible by Raman spectroscopy in combination with partial least-squares regression. The SBC is lowest (35.76 mg mL-1) for used inlet resin compared to used outlet (40.17 mg mL-1) and unused resin samples (70.35 mg mL-1). Depth profiling by Raman spectroscopy indicates that at below saturating concentrations (∼18 mg mL-1), binding of mAb is not homogeneous through used resin beads with protein binding preferentially to the outer regions of the bead, in contrast to fully homogeneous distribution through unused control MabSelect SuRe resin beads. Analysis of the Raman spectra indicates that one foulant is irreversibly bound mAb. The presence of irreversibly bound mAb and host cell proteins was confirmed by mass spectrometric analysis of used resin beads.


Subject(s)
Spectrum Analysis, Raman , Staphylococcal Protein A , Staphylococcal Protein A/chemistry , Ligands , Chromatography, Affinity/methods , Antibodies, Monoclonal/chemistry
3.
Analyst ; 146(16): 5177-5185, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34296229

ABSTRACT

Therapeutic monoclonal antibodies (mAbs) are effective treatments for a range of cancers and other serious diseases, however mAb treatments cost on average ∼$100 000 per year per patient, limiting their use. Currently, industry favours Protein A affinity chromatography (PrAc) as the key step in downstream processing of mAbs. This step, although highly efficient, represents a significant mAb production cost. Fouling of the Protein A column and Protein A ligand leaching contribute to the cost of mAb production by shortening the life span of the resin. In this study, we assessed the performance of used PrAc resin recovered from the middle inlet, center and outlet as well as the side inlet of a pilot-scale industrial column. We used a combination of static binding capacity (SBC) analysis and Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy to explore the used resin samples. SBC analysis demonstrated that resin from the inlet of the column had lower binding capacity than resin from the column outlet. ATR-FTIR spectroscopy with PLS (partial least square) analysis confirmed the results obtained from SBC analysis. Importantly, in situ ATR-FTIR spectroscopy also allowed both measurement of the concentration and assessment of the conformational state of the bound Protein A. Our results reveal that PrAc resin degradation after use is dependent on column location and that neither Protein A ligand leaching nor denaturation are responsible for binding capacity loss.


Subject(s)
Antibodies, Monoclonal , Staphylococcal Protein A , Ataxia Telangiectasia Mutated Proteins , Humans , Least-Squares Analysis , Spectroscopy, Fourier Transform Infrared
4.
Biotechnol Bioeng ; 115(5): 1279-1287, 2018 05.
Article in English | MEDLINE | ID: mdl-29315494

ABSTRACT

Monoclonal antibodies of the IgG2 and IgG4 isotype were found to exhibit an increased propensity for displaying two-peak elution profiles during cation exchange chromatography. In some cases, this two-peak elution profile also resulted in the formation of non-reversible mAb aggregates. Comparison of IgG1, IgG2, and IgG4 molecules with the same variable region reveals that the two-peak behaviour is predominantly mediated by the constant region and most likely the lower CH1, hinge and upper CH2 regions of the mAb. Furthermore, comparison of the behaviour of two different IgG4 molecules, reveals that the degree of non-reversible aggregate formation, whilst facilitated by the isotype format, is mediated primarily by the variable region of the molecule. As well as the properties of the mAb molecule itself, the chemistry and structure of the cation exchange resin was also found to have an effect, with the two-peak elution profile being more pronounced with polymer-grafted resins such as Capto S Impact and Eshmuno CPX. These results combined support the theory that binding of IgG2 and IgG4 mAbs to cation exchange resins usually occurs through at least two mechanisms mediated by the structural features of the constant region of IgG2s and IgG4s. One of these mechanisms is not only stronger than the other, but also can lead to a conformational change in the molecule. This conformational change can occur in both variable and constant domains of the antibody. This transitory unfolded state can in turn lead to non-reversible aggregation of some mAb molecules.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Immunoglobulin Isotypes/chemistry , Immunoglobulin Isotypes/metabolism , Protein Aggregates , Protein Denaturation , Protein Multimerization , Chromatography, Ion Exchange , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
5.
Bioconjug Chem ; 25(6): 1124-36, 2014 Jun 18.
Article in English | MEDLINE | ID: mdl-24791606

ABSTRACT

To improve both the homogeneity and the stability of ADCs, we have developed site-specific drug-conjugating reagents that covalently rebridge reduced disulfide bonds. The new reagents comprise a drug, a linker, and a bis-reactive conjugating moiety that is capable of undergoing reaction with both sulfur atoms derived from a reduced disulfide bond in antibodies and antibody fragments. A disulfide rebridging reagent comprising monomethyl auristatin E (MMAE) was prepared and conjugated to trastuzumab (TRA). A 78% conversion of antibody to ADC with a drug to antibody ratio (DAR) of 4 was achieved with no unconjugated antibody remaining. The MMAE rebridging reagent was also conjugated to the interchain disulfide of a Fab derived from proteolytic digestion of TRA, to give a homogeneous single drug conjugated product. The resulting conjugates retained antigen-binding, were stable in serum, and demonstrated potent and antigen-selective cell killing in in vitro and in vivo cancer models. Disulfide rebridging conjugation is a general approach to prepare stable ADCs, which does not require the antibody to be recombinantly re-engineered for site-specific conjugation.


Subject(s)
Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Disulfides/chemistry , Oligopeptides/chemistry , Oligopeptides/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , MCF-7 Cells , Molecular Structure , Structure-Activity Relationship , Trastuzumab
6.
Bioconjug Chem ; 25(3): 460-9, 2014 Mar 19.
Article in English | MEDLINE | ID: mdl-24512057

ABSTRACT

Many clinically used protein therapeutics are modified to increase their efficacy. Example modifications include the conjugation of cytotoxic drugs to monoclonal antibodies or poly(ethylene glycol) (PEG) to proteins and peptides. Monothiol-specific conjugation can be efficient and is often accomplished using maleimide-based reagents. However, maleimide derived conjugates are known to be susceptible to exchange reactions with endogenous proteins. To address this limitation in stability, we have developed PEG-mono-sulfone 3, which is a latently reactive, monothiol selective conjugation reagent. Comparative reactions with PEG-maleimide and other common thiol-selective PEGylation reagents including vinyl sulfone, acrylate, and halo-acetamides show that PEG-mono-sulfone 3 undergoes more efficient conjugation under mild reaction conditions. Due to the latent reactivity of PEG-mono-sulfone 3, its reactivity can be tailored and, once conjugated, the electron-withdrawing ketone is easily reduced under mild conditions to prevent undesirable deconjugation and exchange reactions from occurring. We describe a comparative stability study demonstrating a PEG-maleimide conjugate to be more labile to deconjugation than the corresponding conjugate obtained using PEG-mono-sulfone 3.


Subject(s)
Maleimides/chemistry , Polyethylene Glycols/chemistry , Sulfones/chemistry , Hydrogen-Ion Concentration , Molecular Structure
7.
Bioconjug Chem ; 23(2): 248-63, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22243664

ABSTRACT

The efficacy of protein-based medicines can be compromised by their rapid clearance from the blood circulatory system. Achieving optimal pharmacokinetics is a key requirement for the successful development of safe protein-based medicines. Protein PEGylation is a clinically proven strategy to increase the circulation half-life of protein-based medicines. One limitation of PEGylation is that there are few strategies that achieve site-specific conjugation of PEG to the protein. Here, we describe the covalent conjugation of PEG site-specifically to a polyhistidine tag (His-tag) on a protein. His-tag site-specific PEGylation was achieved with a domain antibody (dAb) that had a 6-histidine His-tag on the C-terminus (dAb-His(6)) and interferon α-2a (IFN) that had an 8-histidine His-tag on the N-terminus (His(8)-IFN). The site of PEGylation at the His-tag for both dAb-His(6)-PEG and PEG-His(8)-IFN was confirmed by digestion, chromatographic, and mass-spectral studies. A methionine was also inserted directly after the N-terminal His-tag in IFN to give His(8)Met-IFN. Cyanogen bromide digestion studies of PEG-His(8)Met-IFN were also consistent with PEGylation at the His-tag. By using increased stoichiometries of the PEGylation reagent, it was possible to conjugate two separate PEG molecules to the His-tag of both the dAb and IFN proteins. Stability studies followed by in vitro evaluation confirmed that these PEGylated proteins retained their biological activity. In vivo PK studies showed that all of the His-tag PEGylated samples displayed extended circulation half-lives. Together, our results indicate that site-specific, covalent PEG conjugation at a His-tag can be achieved and biological activity maintained with therapeutically relevant proteins.


Subject(s)
Antibodies/chemistry , Histidine/chemistry , Polyethylene Glycols/chemistry , Models, Molecular , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...