Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
BMC Complement Med Ther ; 24(1): 132, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532470

ABSTRACT

Colorectal cancer (CRC) is deadly anaplastic changes in the gastrointestinal tract with high-rate mortality. In recent years, the application of phytocompounds has been extended along with different therapeutic protocols. Here, we monitored the effects of Thymoquinone (TQ) on autophagy via mitochondrial function after modulation of the Wnt/ß-catenin signaling pathway.Human colorectal adenocarcinoma HT-29 cells were treated with TQ (60 µM) and 15 µM Wnt3a inhibitor (LGK974) for 48 h. The survival rate was evaluated using an MTT assay. The expression of Wnt-related factors (c-Myc, and Axin), angiogenesis (VE-Cadherin), and mitophagy-related factors (PINK1, OPTN) was assessed using real-time PCR assay. Protein levels of autophagy factors (Beclin-1, LC3, and P62) were monitored using western blotting. Using flow cytometry analysis, the intracellular accumulation of Rhodamine 123 was evaluated. The migration properties were analyzed using a scratch wound healing assay.Data indicated that TQ can reduce the viability of HT-29 cells compared to the control cells (p < 0.05). The expression of VE-Cadherin was inhibited while the expression of PINK1 was induced in treated cells (p < 0.05). Both LGK974 and TQ-treated cells exhibited activation of autophagy flux (Beclin-1↑, LC3II/I↑, and p62↓) compared to the control group (p < 0.05). TQ can increase intracellular accumulation of Rhodamine 123, indicating the inhibition of efflux mechanisms in cancer cells. Along with these changes, the migration of cells was also reduced (p < 0.05).TQ is a potential phytocompound to alter the dynamic growth of human colorectal HT-29 cells via the modulation of autophagy, and mitophagy-related mechanisms.


Subject(s)
Adenocarcinoma , Benzoquinones , Colorectal Neoplasms , Humans , Rhodamine 123/pharmacology , Rhodamine 123/therapeutic use , Colorectal Neoplasms/drug therapy , Autophagy , Protein Kinases
2.
Article in English | MEDLINE | ID: mdl-38361356

ABSTRACT

BACKGROUND: Cinnamic acid, an active compound in cinnamon spp., has anti-inflamatory and antioxidant characteristics and is favorable in managing inflammatory bowel diseases. OBJECTIVE: Evaluate cinnamic acid's effects on colitis in rats. METHODS: To induce colitis in experimental rats, excluding the sham group, a 4% intrarectal solution of acetic acid was administered. The rats were then given oral doses of cinnamic acid at 30, 45, and 90 mg/kg for two days. The animals were assessed for macroscopic and microscopic changes, and the levels of inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and myeloperoxidase (MPO) were measured using Eliza kits. Additionally, real-time PCR was performed to examine the gene level of toll-like receptor 4 (TLR-4) in the colon. RESULTS: Effective reduction of inflammation in acetic acid-induced colitis was achieved through cinnamic acid at doses of 45 and 90 mg/kg. The decrease was achieved by inhibiting the activities of TNF-α, IL-6, and MPO while downregulating the expression of TLR-4. It is important to note that macroscopic and microscopic evaluations were significant in determining the effectiveness of cinnamic acid in reducing inflammation. CONCLUSION: Downregulation of inflammatory cytokines and TLR-4 expression may contribute to cinnamic acid's anti-inflammatory effect.

3.
J Ethnopharmacol ; 323: 117708, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38181932

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fraxinus excelsior L. (FE), commonly known as the ash, belongs to the Oleaceae family and has shown several pharmacological and biological properties, such as antioxidant, immunomodulatory, neuroprotective, and anti-inflammatory effects. It has also attracted the most attention toward neuroinflammation. Moreover, FE bark and leaves have been used to treat neurological disorders, aging, neuropathic pain, urinary complaints, and articular pain in traditional and ethnomedicine. Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder resulting from the involvement of amyloid-beta, metal-induced oxidative stress, and neuroinflammation. AIM OF THE STUDY: The objective of the current study was to assess the neuroprotective effects of hydromethanolic extract from FE bark in an AlCl3-induced rat model of AD. MATERIALS AND METHODS: The maceration process was utilized to prepare the hydromethanolic extract of FE bark, and characterized by LC-MS/MS. To assess the anti-AD effects of the FE extract, rats were categorized into five different groups, AlCl3; normal control; FE-treated groups at 50, 100, and 200 mg/kg. Passive avoidance learning test, Y-maze, open field, and elevated plus maze behavioral tests were evaluated on days 7 and 14 to analyze the cognitive impairments. Zymography analysis, biochemical tests, and histopathological changes were also followed in different groups. RESULTS: LC-MS/MS analysis indicated the presence of coumarins, including isofraxidin7-O-diglucoside in the methanolic extract of FE as a new isofraxidin derivative in this genus. FE significantly improved memory and cognitive function, maintained weight, prevented neuronal damages, and preserved the hippocampus's histological features, as demonstrated by behavioral tests and histopathological analysis. FE increased anti-inflammatory MMP-2 activity, whereas it decreased that of inflammatory MMP-9. Moreover, FE increased plasma antioxidant capacity by enhancing CAT and GSH while decreasing nitrite levels in the serum of treated groups. In comparison between the treated groups, the rats that received high doses of the FE extract (200 mg/kg) showed the highest therapeutic effect. CONCLUSION: FE rich in coumarins could be an effective anti-AD adjunct agent, passing through antioxidant and anti-inflammatory pathways. These results encourage further studies for the development of this extract as a promising agent in preventing, managing, or treating AD and related diseases.


Subject(s)
Alzheimer Disease , Fraxinus , Neuroprotective Agents , Rats , Animals , Aluminum Chloride/pharmacology , Aluminum Chloride/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Fraxinus/metabolism , Neuroinflammatory Diseases , Plant Bark/metabolism , Chromatography, Liquid , Rats, Wistar , Disease Models, Animal , Tandem Mass Spectrometry , Oxidative Stress , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Coumarins/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
4.
Article in English | MEDLINE | ID: mdl-38258770

ABSTRACT

BACKGROUND: Visceral hypersensitivity (VH) is an overreaction of the gastrointestinal (GI) tract to various stimuli and is characterized by hyperalgesia and/or allodynia. VH contributes to the etiology of many GI dysfunctions, particularly irritable bowel syndrome (IBS). Although the exact mechanisms underlying VH are yet to be found, inflammation and oxidative stress, psychosocial factors, and sensorimotor alterations may play significant roles in it. OBJECTIVE: In this review, we provide an overview of VH and its pathophysiological function in GI disorders. Adverse effects of synthetic drugs may make herbal agents a good candidate for pain management. Therefore, in this review, we will discuss the efficacy of herbal agents in the management of VH with a focus on their anti-inflammatory and antioxidant potentials. METHODS: Data were extracted from clinical and animal studies published in English between 2004 and June, 2020, which were collected from PubMed, Google Scholar, Scopus, and Cochrane Library. RESULTS: Overall, Radix, Melissia, Glycyrrhizae, Mentha, and Liquorice were the most efficient herbals for VH management in IBS and dyspepsia, predominantly through modulation of the mRNA expression of transient receptor potential vanilloid type-1 (TRPV1) and suppression of 5- hydroxytryptamine 3 (5-HT3) or the serotonin receptors. CONCLUSION: Considering the positive effects of herbal formulations in VH management, further research on novel herbal and/or herbal/chemical preparations is warranted.

5.
Fitoterapia ; 172: 105720, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37931721

ABSTRACT

BACKGROUND: The present study aimed to evaluate the impacts of lavender and metformin on polycystic ovary syndrome (PCOS) patients. METHODS: We performed a randomized, double-blind clinical trial including 68 females aged 18 to 45, fulfilling the Rotterdam criteria for PCOS. The patients were randomized to receive lavender (250 mg twice daily) or metformin (500 mg three times a day) for 90 days. The serum progesterone was measured at baseline and after 90 days, one week before their expected menstruation. Moreover, the length of the menstrual cycle was documented. RESULTS: Our results showed that lavender and metformin treatment notably increased the progesterone levels in PCOS patients (increasing from 0.35 (0.66) and 0.8 (0.69) to 2.5 (6.2) and 2.74 (6.27) ng/mL, respectively, P < 0.001). However, we found no significant differences between the increasing effects of both treatments on progesterone levels. In addition, all patients in the lavender or metformin groups had baseline progesterone levels <3 ng/mL, reaching 14 (45.2%) patients >3 ng/mL. Lavender and metformin remarkably attenuated the menstrual cycle length in PCOS patients (decreasing from 56.0 (20.0) and 60 (12.0) to 42.0 (5.0) and 50.0 (14.0) days, respectively, P < 0.001). Furthermore, the decreasing effects of lavender on the menstrual cycle length were greater than the metformin group; however, it was not statistically significant (P = 0.06). CONCLUSION: Lavender effectively increased progesterone levels and regulated the menstrual cycles in PCOS patients, similar to metformin. Therefore, lavender may be a promising candidate for the treatment of PCOS.


Subject(s)
Lavandula , Metformin , Polycystic Ovary Syndrome , Adolescent , Adult , Female , Humans , Middle Aged , Young Adult , Metformin/pharmacology , Molecular Structure , Polycystic Ovary Syndrome/drug therapy , Progesterone/metabolism
6.
Article in English | MEDLINE | ID: mdl-38150015

ABSTRACT

Rheumatoid arthritis (RA) is the most common chronic inflammatory disease, primarily affecting the joints and with stromal tissue dysregulation causing chronic inflammation and joint destruction. Rutin is a natural flavonoid with potential therapeutic properties in chronic destructive conditions including rheumatoid diseases. In this study, the protective effects of rutin nanoformulation in an animal model of rheumatoid arthritis caused by Freund's complete adjuvant (FCA) were investigated. Sixty male rats were randomly divided into ten groups including normal, negative control, prednisolone 10 mg/kg (positive control), 3 doses of rutin (15, 30, 45mg/kg), rutin nanoparticles (15, 30, 45 mg/kg), and nanoparticle without rutin, for 28 days. Different behavioral parameters including the open field test, acetone drop test, hot plate test, Von Frey test, and inclined plane test were evaluated. Serum levels of glutathione (GSH), catalase, and nitric oxide as well as histopathological analyses were measured in different groups. Also, matrix metalloproteinase (MMP)-2 and MMP-9 activity were appraised by gelatin zymography. The injection of FCA prolonged the rats' immobility duration in comparison to the control group. Rheumatoid arthritis induction also increased nitric oxide and decreased GSH and catalase levels, while these effects were reversed in the groups that received nanoparticles containing rutin and prednisolone. Rutin nanoparticles suppressed MMP-9 and activated MMP-2. Also, this rutin drug delivery system plays a significant role in the improvement of histopathological symptoms. Considering the improvement of behavioral and tissue symptoms and the modulation of the level of inflammatory cytokines, nanoparticles containing rutin can be proposed as a suitable approach in the management of patients with rheumatoid arthritis.

7.
Brain Behav ; 13(10): e3215, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37553827

ABSTRACT

OBJECTIVE: To identify the genomics underpinning the increased volume of the hippocampus after long-term administration of lithium (Li) in bipolar disorder patients, hypothesizing the possible contribution of cell growth and differentiation pathways to this complication. METHODS: RNA-seq profiles of four samples of hippocampal progenitor cells chronically treated with a high dose of Li and three samples chronically treated with the therapeutic dose were retrieved from NCBI-GEO. The raw data underwent filtration, quality control, expression fold change, adjusted significance, functional enrichment, and pharmacogenomic analyses. RESULTS: CCND1, LOXL2, and PRNP were identified as the genes involved in the drug response and the chronic effects of Li in the hippocampal cells. GSK-3ß was also a hub in the pharmacogenomic network of Li. In addition, ZMPSTE24 and DHX35 were identified as the important genes in lithium therapy. CONCLUSIONS: As shown by gene ontology results, these findings conclude that lithium may increase the size of the hippocampus in bipolar patients by stimulating the generation of new neurons and promoting their differentiation into neuroblasts, neurons, or microglia.

8.
AAPS PharmSciTech ; 24(5): 112, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37118443

ABSTRACT

Achillea wilhelmsii (A. wilhelmsii) contains several therapeutic phytochemicals, proposing a protective effect on inflammatory responses in autoimmune diseases such as ulcerative colitis (UC). However, its activities against UC encounter multiple obstacles. The current study aimed to formulate a colon-specific delivery of A. wilhelmsii for treating UC using chitosan nanoparticles (NPs) and Eudragit S100 as a mucoadhesive and pH-sensitive polymer, respectively. Core chitosan NP was loaded with A. wilhelmsii extract, followed by coating with Eudragit S100. Then, physicochemical characterizations of prepared NPs were conducted, and the anti-UC activity in the rat model was evaluated. The relevant physicochemical characterizations indicated the spherical NPs with an average particle size of 305 ± 34 nm and high encapsulation efficiency (88.6 ± 7.3%). The FTIR (Fourier transform infrared) analysis revealed the Eudragit coating and the extract loading, as well as the high radical scavenging ability of A. wilhelmsii was confirmed. The loaded NPs prevented the extract release in an acidic pH-mimicking medium and presented a complete release thereafter at a colonic pH. The loaded NPs markedly mitigated the induced UC lesions in rats, reflected by reducing inflammation, ulcer severity, and UC-related symptoms. Further, histopathological analysis exhibited reducing the extent of the inflammation and damage to colon tissue, and the determination of the involved pro-inflammatory cytokines in serum showed a significant reduction relative to free extract. The present results show that chitosan NPs containing A. wilhelmsii extract coated with Eudragit having proper physicochemical properties and substantial anti-inflammatory activity can significantly improve colonic lesions caused by UC.


Subject(s)
Achillea , Chitosan , Colitis, Ulcerative , Colitis , Nanoparticles , Rats , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Achillea/chemistry , Colon , Nanoparticles/chemistry , Inflammation/pathology , Colitis/chemically induced , Colitis/drug therapy
9.
Metabolites ; 13(3)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36984763

ABSTRACT

Saponins are one of the broadest classes of high-molecular-weight natural compounds, consisting mainly of a non-polar moiety with 27 to 30 carbons and a polar moiety containing sugars attached to the sapogenin structure. Saponins are found in more than 100 plant families as well as found in marine organisms. Saponins have several therapeutic effects, including their administration in the treatment of various cancers. These compounds also reveal noteworthy anti-angiogenesis effects as one of the critical strategies for inhibiting cancer growth and metastasis. In this study, a comprehensive review is performed on electronic databases, including PubMed, Scopus, ScienceDirect, and ProQuest. Accordingly, the structural characteristics of triterpenoid/steroid saponins and their anti-cancer effects were highlighted, focusing on their anti-angiogenic effects and related mechanisms. Consequently, the anti-angiogenic effects of saponins, inhibiting the expression of genes related to vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1-α (HIF-1α) are two main anti-angiogenic mechanisms of triterpenoid and steroidal saponins. The inhibition of inflammatory signaling pathways that stimulate angiogenesis, such as pro-inflammatory cytokines, mitogen-activated protein kinase (MAPKs), and phosphoinositide 3-kinases/protein kinase B (PI3K/Akt), are other anti-angiogenic mechanisms of saponins. Furthermore, the anti-angiogenic and anti-cancer activity of saponins was closely related to the binding site of the sugar moiety, the type and number of their monosaccharide units, as well as the presence of some functional groups in their aglycone structure. Therefore, saponins are suitable candidates for cancer treatment by inhibiting angiogenesis, for which extensive pre-clinical and comprehensive clinical trial studies are recommended.

10.
Metabolites ; 13(3)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36984844

ABSTRACT

It has been demonstrated that cancer stem cells (CSCs) go through metabolic changes that differentiate them from non-CSCs. The altered metabolism of CSCs plays a vital role in tumor initiation, progression, immunosuppression, and resistance to conventional therapy. Therefore, defining the role of CSC metabolism in carcinogenesis has emerged as a main focus in cancer research. Two natural flavonoids, apigenin and isovitexin, have been shown to act synergistically with conventional chemotherapeutic drugs by sensitizing CSCs, ultimately leading to improved therapeutic efficacy. The aim of this study is to present a critical and broad evaluation of the anti-CSC capability of apigenin and isovitexin in different cancers as novel and untapped natural compounds for developing drugs. A thorough review of the included literature supports a strong association between anti-CSC activity and treatment with apigenin or isovitexin. Additionally, it has been shown that apigenin or isovitexin affected CSC metabolism and reduced CSCs through various mechanisms, including the suppression of the Wnt/ß-catenin signaling pathway, the inhibition of nuclear factor-κB protein expression, and the downregulation of the cell cycle via upregulation of p21 and cyclin-dependent kinases. The findings of this study demonstrate that apigenin and isovitexin are potent candidates for treating cancer due to their antagonistic effects on CSC metabolism.

11.
Pharmacoepidemiol Drug Saf ; 32(9): 951-960, 2023 09.
Article in English | MEDLINE | ID: mdl-36974582

ABSTRACT

PURPOSE: Hypertension (HTN) is one of the most common risk factors for non-communicable chronic diseases. The aim of the current study is to evaluate the prescribing patterns of antihypertensive medications in Kermanshah Province, west of Iran. METHODS: The Ravansar Non-Communicable Diseases (RaNCD) cohort study is the first Kurdish community-based study; subjects' age ranged from 35 to 65 years. In order to examine the use of medications to control blood pressure, participants were asked to bring all prescribed medications to the study center. Treatments were compared with 2013 European Society of Hypertension (ESH)/European Society of Cardiology (ESC) Guidelines for the management of arterial HTN. RESULTS: From a total of 10 040 participants in RaNCD cohort, 1575 (15.7%) individuals were hypertensive, of whom, 1271 (80.7%) people were aware of their condition. From 1153 (73.20%) people under treatment, 840 (72.8%) had their HTN properly controlled. The most common medications used to treat HTN were losartan (27.5%), metoprolol (14.3%), and captopril (11.9%). Regardless of type of treatment, 49.3% of all patients have received the medication for l 6 ≥ years. The most commonly used drugs were ß-blockers and angiotension receptor blockers as 620 (31.0%) and 612 (30.6%), respectively. Multivariable analysis showed that female gender, those receive ≥3 antihypertensive agents, and using preferred combinations were associated with a better blood pressure control. In addition, the probability of hypertension control was less likely with increasing duration of treatment (i.e >6 years) and in obese patients with ≥35 kg/m2 . CONCLUSIONS: Even though adherence to the international guidelines was acceptable, improvements can be made for better control of HTN. Therefore, it is imperative to educate healthcare professionals on improving their selection of antihypertensive medications and combination therapy for hypertensive patients.


Subject(s)
Antihypertensive Agents , Hypertension , Humans , Female , Adult , Middle Aged , Aged , Cohort Studies , Iran/epidemiology , Hypertension/drug therapy , Hypertension/epidemiology , Blood Pressure
12.
Naunyn Schmiedebergs Arch Pharmacol ; 396(8): 1633-1646, 2023 08.
Article in English | MEDLINE | ID: mdl-36971866

ABSTRACT

Ischemia/reperfusion (I/R) injury is a tissue damage during reperfusion after an ischemic condition. I/R injury is induced by pathological cases including stroke, myocardial infarction, circulatory arrest, sickle cell disease, acute kidney injury, trauma, and sleep apnea. It can lead to increased morbidity and mortality in the context of these processes. Mitochondrial dysfunction is one of the hallmarks of I/R insult, which is induced via reactive oxygen species (ROS) production, apoptosis, and autophagy. MicroRNAs (miRNAs, miRs) are non-coding RNAs that play a main regulatory role in gene expression. Recently, there are evidence, which miRNAs are the major modulators of cardiovascular diseases, especially myocardial I/R injury. Cardiovascular miRNAs, specifically miR-21, and probably miR-24 and miR-126 have protective effects on myocardial I/R injury. Trimetazidine (TMZ) is a new class of metabolic agents with an anti-ischemic activity. It has beneficial effects on chronic stable angina by suppressing mitochondrial permeability transition pore (mPTP) opening. The present review study addressed the different mechanistic effects of TMZ on cardiac I/R injury. Online databases including Scopus, PubMed, Web of Science, and Cochrane library were assessed for published studies between 1986 and 2021. TMZ, an antioxidant and metabolic agent, prevents the cardiac reperfusion injury by regulating AMP-activated protein kinase (AMPK), cystathionine-γ-lyase enzyme (CSE)/hydrogen sulfide (H2S), and miR-21. Therefore, TMZ protects the heart against I/R injury by inducing key regulators such as AMPK, CSE/H2S, and miR-21.


Subject(s)
MicroRNAs , Myocardial Infarction , Myocardial Reperfusion Injury , Reperfusion Injury , Trimetazidine , Humans , Trimetazidine/pharmacology , Trimetazidine/therapeutic use , AMP-Activated Protein Kinases , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
13.
J Pharm Sci ; 112(6): 1687-1697, 2023 06.
Article in English | MEDLINE | ID: mdl-36773928

ABSTRACT

Ginger is an anti-inflammatory and antioxidant natural substance, however, its effectiveness is limited primarily due to insufficient solubility and low oral bioavailability. This study aimed to formulate ginger extract into nanoemulsion (NE) to enhance therapeutic benefits against rheumatoid arthritis (RA). Hence, ginger extract-loaded NEs were prepared by the spontaneous emulsification method. The NE that passed the thermodynamic stability analyses showed no phase changes or appearance of turbidity. They had an average droplet diameter of 76 ± 45 nm with a zeta potential of - 35 ± 12 mV. Besides, the high antioxidant activities (IC50 = 53.89 µg/mL), about ten times increment of the skin permeability, and no sign of skin irritancy were observed from the ginger-loaded NE. The anti-arthritic evaluations of RA-induced rats treated with ginger-loaded NE showed a significant decline in arthritic symptoms and the highest rate of paw edema inhibition (27.7 %). In addition, the level of involved inflammatory cytokines in the serum of rats was significantly reduced (p < 0.05) compared to the negative control, so that histopathological manifestations also approved the reduction of inflammation indications. Thus, the topical delivery of ginger-loaded NE can be an efficient approach for reducing inflammation and inhibit of RA symptoms.


Subject(s)
Antioxidants , Arthritis, Rheumatoid , Rats , Animals , Rats, Wistar , Emulsions/pharmacology , Arthritis, Rheumatoid/drug therapy , Inflammation
14.
Curr Probl Cardiol ; 48(8): 101198, 2023 Aug.
Article in English | MEDLINE | ID: mdl-35405162

ABSTRACT

Punica granatum (Family Lythraceae) comprises considerable content of phenolic components and it proves the antioxidant activity of pomegranate. Some clinical trial investigations display that consumption of pomegranate is able to boost the antioxidant status. This systematic review assessed the efficacy of pomegranate extract to reduce oxidative stress. Pomegranate was used in some studies as capsules (between 250 mg and 250 g) and some in liquid form (between 10 and 500 ml), and the follow-up duration varied from 3 weeks to 12 months. Standardized mean difference and its corresponding 95% confidence interval (CI) was used as the effect size of pomegranate supplementation on oxidative stress biomarkers. Based on the results, pomegranate decreased but it was not statistically significant and the same result was obtained for ox-LDL and POX 1. In addition, the results showed that pomegranate consumption can significantly increase GPX and TAC. Result of combination of on TBRAS showed significantly effect of pomegranate use on reduction of TBRAS. Since this study has evaluated mostly Eastern countries' studies it could be concluded that pomegranate supplements are effective in modifying oxidative stress in Eastern countries. The evidence to support this study is low, therefore, needs the future studies to confirm the results.


Subject(s)
Pomegranate , Humans , Randomized Controlled Trials as Topic , Antioxidants/therapeutic use , Antioxidants/pharmacology , Oxidative Stress , Dietary Supplements , Biomarkers
15.
J Food Biochem ; 46(12): e14408, 2022 12.
Article in English | MEDLINE | ID: mdl-36129161

ABSTRACT

Autophagy is a pivotal contributing factor to modulate the progression of neurodegenerative diseases. Although naringenin (Nar) has shown beneficial effects against neurodegenerative diseases, its poor solubility and bioavailability have limited its application. The present research aimed to design a nanostructured formulation of Nar to achieve an enhanced therapeutic effect. Herein, Nar-loaded solid lipid nanoparticles (Nar-SLNs) were prepared and characterized. Then, PC12 cells were exposed to streptozocin (STZ) and/or Nar and Nar-SLNs in vitro to clarify the protective effect of Nar and its nanoformulation against STZ-stimulated neurotoxicity. The empty SLNs and Nar-SLNs indicated a narrow polydispersity index value with a negative zeta potential. As determined by the scanning electron microscopy images, the nanoparticles had a spherical shape and were less than 20 nm in size. FTIR results demonstrated the interaction between Nar and SLNs and supported the presence of Nar in the nanoparticle. The nanoformulation revealed an initial burst release followed by a sustained release manner. Treatment of PC12 cells with STZ resulted in mitochondrial dysfunction and increased autophagic markers, including LC3-II, Beclin1, Akt, ATG genes, and accumulation of miR-21 and miR-22. Both Nar and Nar-SLNs pre-treatment improved cell survival and augmented mitochondrial membrane potential, accompanied by reduced autophagic markers expression. However, Nar-SLNs were more effective than free Nar. As a result, our findings suggested that SLNs effectively enhance the neuroprotective effect of Nar, and Nar-SLNs may be a promising candidate to suppress or prevent STZ-elicited neurotoxicity. PRACTICAL APPLICATIONS: According to the beneficial effect of Nar in the management of neurodegenerative diseases, we evaluated the protective effect of Nar and Nar-SLNs against STZ-stimulated neurotoxicity and analyzed the role of autophagy in STZ-stimulated neurotoxicity. Our results proposed that Nar-SLNs could be a promising option for neurological disorders prevention through autophagy suppression.


Subject(s)
MicroRNAs , Nanoparticles , Neuroprotective Agents , Rats , Animals , Lipids , Neuroprotective Agents/pharmacology , Streptozocin
16.
Phytomedicine ; 105: 154333, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35952577

ABSTRACT

BACKGROUND: Many substances derived from nutritional or medicinal plants have been studied for their chemopreventive and antineoplastic properties. Among those studied, Ficus carica has shown to have a significant ability to inhibit tumor formation and development of cancer cells through modulating various signaling mechanisms and interaction including a large number of cell signaling molecules. PURPOSE: The goal of this study is to provide a critical and complete evaluation of F. carica's anticancer capacity in various malignancies, as well as related molecular targets. METHODS: Research was conducted electronically on scholarly scientific databases, including Science Direct, PubMed, and Scopus. Published papers were analyzed and investigated using the keywords, Ficus carica, figs, cancer, malignancies and tumor based on established selection criteria. In this systematic review, 27 individual studies were considered. RESULTS: Treatment with F. carica alone or in combination with other medications was linked to anticancer activity with significant evidence. Furthermore, F. carica has been shown to use multitargeted pathways to prevent cancer initiation and development by modulating numerous dysregulated signaling cascades involved in cell proliferation, cell cycle regulation, apoptosis, autophagy inflammatory processes, metastasis, invasion, and angiogenesis. CONCLUSION: Our findings suggest that F. carica and its phytochemicals have the potential for cancer prevention and therapy. Nonetheless, additional mechanistic studies with pure compounds derived from F. carica and well-designed clinical trials are needed to advance our knowledge to clinical application.


Subject(s)
Carica , Ficus , Neoplasms , Plants, Medicinal , Humans , Phytochemicals , Plant Extracts
17.
Anal Cell Pathol (Amst) ; 2022: 9725244, 2022.
Article in English | MEDLINE | ID: mdl-35983460

ABSTRACT

Results: Aqueous extract and essential oil reduced the viability of A549 cancer cells in a concentration-dependent manner. The lowest inhibitory concentrations (IC50) for both samples of D. ammoniacum oleo-gum resin were 10 and 2.5 µg/ml for 24 hours in A549 cell line, respectively. After treatment with extract and essential oil of D. ammoniacum oleo-gum resin, ROS increased significantly compared to the control group. Although changes in caspase-3 did not show a significant increase in extract, the caspase-3 was found to be increased after exposure to essential oil and caspase-9 was downregulated after exposure to essential oil. Also, exposure to essential oil of D. ammoniacum caused a reduction in MMP level. Conclusion: Based on results, the cytotoxic effect of essential oil of D. ammoniacum can induce apoptosis toward A549 cell line via induction of oxidative stress, MMP depletion, and caspase-3 activation, which is independent to mitochondrial cytochrome c release and caspase-9 function.


Subject(s)
Neoplasms , Oils, Volatile , Apoptosis , Caspase 3/pharmacology , Caspase 9/pharmacology , Cell Line , Humans , Oils, Volatile/pharmacology , Plant Extracts/pharmacology
18.
Korean J Pain ; 35(3): 291-302, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35768984

ABSTRACT

Background: Spinal cord injury (SCI) is one of the most debilitating disorders throughout the world, causing persistent sensory-motor dysfunction, with no effective treatment. Oxidative stress and inflammatory responses play key roles in the secondary phase of SCI. Naringenin (NAR) is a natural flavonoid with known anti-inflammatory and antioxidative properties. This study aims at evaluating the effects of intrathecal NAR administration on sensory-motor disability after SCI. Methods: Animals underwent a severe compression injury using an aneurysm clip. About 30 minutes after surgery, NAR was injected intrathecally at the doses of 5, 10, and 15 mM in 20 µL volumes. For the assessment of neuropathic pain and locomotor function, acetone drop, hot plate, inclined plane, and Basso, Beattie, Bresnahan tests were carried out weekly till day 28 post-SCI. Effects of NAR on matrix metalloproteinase (MMP)-2 and MMP-9 activity was appraised by gelatin zymography. Also, histopathological analyses and serum levels of glutathione (GSH), catalase and nitrite were measured in different groups. Results: NAR reduced neuropathic pain, improved locomotor function, and also attenuated SCI-induced weight loss weekly till day 28 post-SCI. Zymography analysis showed that NAR suppressed MMP-9 activity, whereas it increased that of MMP-2, indicating its anti-neuroinflammatory effects. Also, intrathecal NAR modified oxidative stress related markers GSH, catalase, and nitrite levels. Besides, the neuroprotective effect of NAR was corroborated through increased survival of sensory and motor neurons after SCI. Conclusions: These results suggest intrathecal NAR as a promising candidate for medical therapeutics for SCI-induced sensory and motor dysfunction.

19.
J Cannabis Res ; 4(1): 21, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35414120

ABSTRACT

BACKGROUND: Among pathways involved in the pathogenesis of coronavirus disease 2019 (COVID-19), impaired endothelial cell (EC) function and angiogenesis have been discussed less frequently than others such as cytokine storm. These two do play parts in the development of various clinical manifestations of COVID-19 including acute respiratory distress syndrome (ARDS) and the hyper-coagulation state. METHODS: This narrative review attempts to gather recent data on the possible potential of cannabidiol in the treatment of COVID-19 with an eye on angiogenesis and endothelial dysfunction. Keywords including cannabidiol AND angiogenesis OR endothelial cell as well as coronavirus disease 2019 OR COVID-19 AND angiogenesis OR endothelial dysfunction were searched among the databases of PubMed and Scopus. RESULTS: Cannabidiol (CBD), as a therapeutic phytocannabinoid, has been approved by the Food and Drug Administration (FDA) for two types of seizures. Due to the potent anti-inflammatory properties of CBD, this compound has been suggested as a candidate treatment for COVID-19 in the literature. Although its potential effect on ECs dysfunction and pathologic angiogenesis in COVID-19 has been overlooked, other than cytokines like interleukin 1ß (IL-ß), IL-6, IL-8, and tumour necrosis factor α (TNFα) that are common in inflammation and angiogenesis, CBD could affect other important factors related to ECs function and angiogenesis. Data shows that CBD could decrease pathologic angiogenesis via decreasing ECs proliferation, migration, and tube formation. These activities are achieved through the suppression of vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), urokinase plasminogen activator (uPA), matrix metalloproteinase 2 (MMP-2), MMP-9, intracellular adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1). Moreover, in an animal model, ARDS and sepsis responded well to CBD treatment. CONCLUSION: Altogether and considering the current use of CBD in the clinic, the conduction of further studies on CBD administration for patients with COVID-19 seems to be useful.

20.
Article in English | MEDLINE | ID: mdl-35419072

ABSTRACT

Asthma is a chronic disease with eosinophilic inflammation and oxidative damages leading to airway obstruction. Naringenin is a phytochemical possessing strong antioxidant and anti-inflammatory activities against chronic destructive conditions. The current study is devoted to evaluating naringenin's effects on the attenuation of inflammation and oxidative stress in lung tissue in a rat model of ovalbumin-induced asthma. Male Wistar rats were allocated to five groups of six: normal control (NC, receiving 1 ml/day of normal saline, orally), asthmatic (AS, receiving ovalbumin (1 mg/mL), and alum (1 mg/mL in saline) on days 0 and 14. Then, on days 21, 22, and 23, they were sensitized with the inhalation of ovalbumin), AS treated with dexamethasone (AS, 1 mg/kg/day, orally) [AS + D1], AS treated with naringenin (20 mg/kg/day, orally) [AS + N20], and AS treated with naringenin (40 mg/kg/day, orally) [AS + N40]. All the groups received associated drugs/agents for 28 days. Finally, bronchoalveolar lavage fluid (BALF) and lung tissue samples were taken off from the animals. The eosinophil count in BALF and malondialdehyde (MDA), glutathione (GSH), interleukin-13 and -4 (IL-13 and IL-4) levels were measured. Besides, the expression of urocortin (UCN) and surfactant protein-D (SP-D) were evaluated in the lung tissue using immunohistochemistry (IHC) and western blotting methods, respectively. Hematoxylin and eosin (H&E) staining were utilized to conduct histopathological analysis. Naringenin treatment significantly reduced MDA, remarkably increased GSH, and meaningfully reduced IL-4 and IL-13 levels in lung tissue. The count of eosinophils in the BALF of AS + N20 and AS + N40 was significantly reduced in comparison with the AS group. The UCN and SP-D protein levels were significantly decreased in the AS + N20 and AS + N40 groups compared to the AS group, using the IHC and western blot methods, respectively. Histopathological analysis data also confirm the results. Naringenin improves the symptoms of allergic asthma through antioxidant and anti-inflammatory effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...