Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Insect Physiol ; 68: 23-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25008193

ABSTRACT

All insects studied to date show reduced growth rates in hypoxia. Drosophila melanogaster reared in moderate hypoxia (10 kPa PO2) grow more slowly and form smaller adults, but the mechanisms responsible are unclear, as metabolic rates are not oxygen-limited. It has been shown that individual fruit flies do not grow larger in hyperoxia (40 kPa PO2), but populations of flies evolve larger size. Here we studied the effect of acute and chronic variation in atmospheric PO2 (10, 21, 40 kPa) on feeding behavior of third instar larvae of D.melanogaster to assess whether oxygen effects on growth rate can be explained by effects on feeding behavior. Hypoxic-reared larvae grew and developed more slowly, and hyperoxic-rearing did not affect growth rate, maximal larval mass or developmental time. The effect of acute exposure to varying PO2 on larval bite rates matched the pattern observed for growth rates, with a 22% reduction in 10 kPa PO2 and no effect of 40 kPa PO2. Chronic rearing in hypoxia had few effects on the responses of feeding rates to oxygen, but chronic rearing in hyperoxia caused feeding rates to be strongly oxygen-dependent. Hypoxia produced similar reductions in bite rate and in the volume of tunnels excavated by larvae, supporting bite rate as an index of feeding behavior. Overall, our data show that reductions in feeding rate can explain reduced growth rates in moderate hypoxia for Drosophila, contributing to reduced body size, and that larvae cannot successfully compensate for this level of hypoxia with developmental plasticity.


Subject(s)
Atmosphere/chemistry , Behavior, Animal , Drosophila melanogaster/growth & development , Larva/growth & development , Oxygen/metabolism , Adaptation, Physiological , Animals , Body Size , Drosophila melanogaster/physiology , Feeding Behavior , Larva/physiology
2.
J Exp Biol ; 214(Pt 9): 1419-27, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21490250

ABSTRACT

Animals reared in hypoxic environments frequently exhibit smaller body sizes than when reared under normal atmospheric oxygen concentrations. The mechanisms responsible for this widely documented pattern of body size plasticity are poorly known. We studied the ontogeny of responses of Drosophila melanogaster adult body size to hypoxic exposure. We hypothesized that there may be critical oxygen-sensitive periods during D. melanogaster development that are primarily responsive to body size regulation. Instead, our results showed that exposure to hypoxia (an atmospheric partial pressure of oxygen of 10 kPa) during any developmental stage (embryo, larvae and pupae) leads to smaller adult size. However, short hypoxic exposures during the late larval and early pupal stages had the greatest effects on adult size. We then investigated whether the observed reductions in size induced by hypoxia at various developmental stages were the result of a decrease in cell size or cell number. Abdominal epithelial cells of flies reared continuously in hypoxia were smaller in mean diameter and were size-limited compared with cells of flies reared in normoxia. Flies reared in hypoxia during the embryonic, larval or pupal stage, or during their entire development, had smaller wing areas than flies reared in normoxia. Flies reared during the pupal stage, or throughout development in hypoxia had smaller wing cells, even after controlling for the effect of wing size. These results suggest that hypoxia effects on the body size of D. melanogaster probably occur by multiple mechanisms operating at various developmental stages.


Subject(s)
Body Size/physiology , Cell Size , Drosophila melanogaster/cytology , Drosophila melanogaster/growth & development , Life Cycle Stages , Abdomen , Animals , Cell Count , Cell Hypoxia , Embryo, Nonmammalian/cytology , Epithelial Cells/cytology , Female , Larva/cytology , Larva/growth & development , Male , Pupa/cytology , Pupa/growth & development , Wings, Animal/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...