Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35270970

ABSTRACT

Fighting Earth's degradation and safeguarding the environment are subjects of topical interest and sources of hot debate in today's society. According to the United Nations, there is a compelling need to take immediate actions worldwide and to implement large-scale monitoring policies aimed at counteracting the unprecedented levels of air, land, and water pollution. This requires going beyond the legacy technologies currently employed by government authorities and adopting more advanced systems that guarantee a continuous and pervasive monitoring of the environment in all its different aspects. In this paper, we take the research on integrated and large-scale environmental monitoring a step further by providing a comprehensive review that covers transversally all the main applications of wireless sensor networks (WSNs), unmanned aerial vehicles (UAVs), and crowdsensing monitoring technologies. By outlining the available solutions and current limitations, we identify in the cooperation among terrestrial (WSN/crowdsensing) and aerial (UAVs) sensing, coupled with the adoption of advanced signal processing techniques, the major pillars at the basis of future integrated (air, land, and water) and large-scale environmental monitoring systems. This review not only consolidates the progresses achieved in the field of environmental monitoring, but also sheds new lights on potential future research directions and synergies among different research areas.


Subject(s)
Environmental Monitoring , Environmental Monitoring/methods , Humans
2.
Sensors (Basel) ; 22(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35162029

ABSTRACT

Acoustic communications are experiencing renewed interest as alternative solutions to traditional RF communications, not only in RF-denied environments (such as underwater) but also in areas where the electromagnetic (EM) spectrum is heavily shared among several wireless systems. By introducing additional dedicated channels, independent from the EM ones, acoustic systems can be used to ensure the continuity of some critical services such as communication, localization, detection, and sensing. In this paper, we design and implement a novel acoustic system that uses only low-cost off-the-shelf hardware and the transmission of a single, suitably designed signal in the inaudible band (18-22 kHz) to perform integrated sensing (ranging) and communication. The experimental testbed consists of a common home speaker transmitting acoustic signals to a smartphone, which receives them through the integrated microphone, and of an additional receiver exploiting the same signals to estimate distance information from a physical obstacle in the environment. The performance of the proposed dual-function system in terms of noise, data rate, and accuracy in distance estimation is experimentally evaluated in a real operational environment.


Subject(s)
Acoustics , Noise , Communication
3.
Sensors (Basel) ; 21(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923829

ABSTRACT

Adopting effective techniques to automatically detect and identify small drones is a very compelling need for a number of different stakeholders in both the public and private sectors. This work presents three different original approaches that competed in a grand challenge on the "Drone vs. Bird" detection problem. The goal is to detect one or more drones appearing at some time point in video sequences where birds and other distractor objects may be also present, together with motion in background or foreground. Algorithms should raise an alarm and provide a position estimate only when a drone is present, while not issuing alarms on birds, nor being confused by the rest of the scene. In particular, three original approaches based on different deep learning strategies are proposed and compared on a real-world dataset provided by a consortium of universities and research centers, under the 2020 edition of the Drone vs. Bird Detection Challenge. Results show that there is a range in difficulty among different test sequences, depending on the size and the shape visibility of the drone in the sequence, while sequences recorded by a moving camera and very distant drones are the most challenging ones. The performance comparison reveals that the different approaches perform somewhat complementary, in terms of correct detection rate, false alarm rate, and average precision.


Subject(s)
Deep Learning , Algorithms , Animals , Birds , Motion
4.
Sensors (Basel) ; 20(15)2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32727117

ABSTRACT

Thanks to recent technological advances, a new generation of low-cost, small, unmanned aerial vehicles (UAVs) is available. Small UAVs, often called drones, are enabling unprecedented applications but, at the same time, new threats are arising linked to their possible misuse (e.g., drug smuggling, terrorist attacks, espionage). In this paper, the main challenges related to the problem of drone identification are discussed, which include detection, possible verification, and classification. An overview of the most relevant technologies is provided, which in modern surveillance systems are composed into a network of spatially-distributed sensors to ensure full coverage of the monitored area. More specifically, the main focus is on the frequency modulated continuous wave (FMCW) radar sensor, which is a key technology also due to its low cost and capability to work at relatively long distances, as well as strong robustness to illumination and weather conditions. This paper provides a review of the existing literature on the most promising approaches adopted in the different phases of the identification process, i.e., detection of the possible presence of drones, target verification, and classification.

5.
Sensors (Basel) ; 19(5)2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30813541

ABSTRACT

The wide availability of sensing modules and computing capabilities in modern mobile devices (smartphones, smart watches, in-vehicle sensors, etc.) is driving the shift from mote-class wireless sensor networks (WSNs) to the new era of crowdsensing WSNs. In this emerging paradigm sensors are no longer static and homogeneous, but are rather worn/carried by people or cars. This results in a new type of wide-area WSN-crowd-based and overlaid on top of heterogeneous communication technologies-that paves the way for very innovative applications. To this aim, the positioning of mobile devices operating in the network becomes crucial. Indeed, the pervasive, almost ubiquitous availability of smart devices brings unprecedented opportunities but also poses new research challenges in their precise location under mobility and dense-multipath environments typical of urban and indoor scenarios. In this paper, we review recent advances in the field of wireless positioning with focus on cooperation, mobility, and advanced array processing, which are key enablers for the design of novel localization solutions for crowdsensing WSNs.

SELECTION OF CITATIONS
SEARCH DETAIL
...