Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int Health ; 14(1): 18-52, 2022 01 19.
Article in English | MEDLINE | ID: mdl-33620427

ABSTRACT

As the coronavirus disease 2019 (COVID-19) pandemic continues to rise and second waves are reported in some countries, serological test kits and strips are being considered to scale up an adequate laboratory response. This study provides an update on the kinetics of humoral immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and performance characteristics of serological protocols (lateral flow assay [LFA], chemiluminescence immunoassay [CLIA] and ELISA) used for evaluations of recent and past SARS-CoV-2 infection. A thorough and comprehensive review of suitable and eligible full-text articles was performed on PubMed, Scopus, Web of Science, Wordometer and medRxiv from 10 January to 16 July 2020. These articles were searched using the Medical Subject Headings terms 'COVID-19', 'Serological assay', 'Laboratory Diagnosis', 'Performance characteristics', 'POCT', 'LFA', 'CLIA', 'ELISA' and 'SARS-CoV-2'. Data from original research articles on SARS-CoV-2 antibody detection ≥second day postinfection were included in this study. In total, there were 7938 published articles on humoral immune response and laboratory diagnosis of COVID-19. Of these, 74 were included in this study. The detection, peak and decline period of blood anti-SARS-CoV-2 IgM, IgG and total antibodies for point-of-care testing (POCT), ELISA and CLIA vary widely. The most promising of these assays for POCT detected anti-SARS-CoV-2 at day 3 postinfection and peaked on the 15th day; ELISA products detected anti-SARS-CoV-2 IgM and IgG at days 2 and 6 then peaked on the eighth day; and the most promising CLIA product detected anti-SARS-CoV-2 at day 1 and peaked on the 30th day. The most promising LFA, ELISA and CLIA that had the best performance characteristics were those targeting total SARS-CoV-2 antibodies followed by those targeting anti-SARS-CoV-2 IgG then IgM. Essentially, the CLIA-based SARS-CoV-2 tests had the best performance characteristics, followed by ELISA then POCT. Given the varied performance characteristics of all the serological assays, there is a need to continuously improve their detection thresholds, as well as to monitor and re-evaluate their performances to assure their significance and applicability for COVID-19 clinical and epidemiological purposes.


Subject(s)
COVID-19 , Humans , Kinetics , Pandemics , SARS-CoV-2 , Sensitivity and Specificity
2.
Heliyon ; 7(1): e05951, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33490695

ABSTRACT

Several months after the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), cases of re-infection after recovery were reported. The extent and duration of protective immunity after SARS-CoV-2 infection is not fully understood. As such, the possibility of re-infection with SARS-CoV-2. Furthermore, cases of re-infection were mainly due to different variants or mutant SARS-CoV-2. Following the fast and pandemic-scale spread of COVID-19, mutations in SARS-CoV-2 have raised new diagnostic challenges which include the redesign of the oligonucleotide sequences used in RT-PCR assays to avoid potential primer-sample mismatches, and decrease sensitivities. Since the initial wave of the pandemic, some regions had experienced fresh outbreaks, predisposing people to be susceptible to SARS-CoV-2 re-infection. Hence, this article sought to offer detailed biology of SARS-CoV-2 re-infections and their implications on immune response milieu, diagnostic laboratory tests and control measures against COVID-19.

3.
Epidemiol Health ; 42: e2020071, 2020.
Article in English | MEDLINE | ID: mdl-33254358

ABSTRACT

OBJECTIVES: West Nile virus (WNV) is a re-emerging mosquito-borne viral infection. This study investigated the pooled prevalence pattern and risk factors of WNV infection among humans and animals in Nigeria. METHODS: A systematic review was conducted of eligible studies published in PubMed, Scopus, Google Scholar, and Web of Science from January 1, 1950 to August 30, 2020. Peer-reviewed cross-sectional studies describing WNV infections in humans and animals were systematically reviewed. Heterogeneity was assessed using the Cochrane Q statistic. RESULTS: Eighteen out of 432 available search output were eligible and included for this study. Of which 13 and 5 were WNV studies on humans and animals, respectively. Although 61.5% of the human studies had a low risk of bias, they all had high heterogeneity. The South West geopolitical zone of Nigeria had the highest pooled prevalence of anti-WNV immunoglobulin M (IgM; 7.8% in humans). The pooled seroprevalence of anti-WNV IgM and immunoglobulin G (IgG) was 7.1% (95% confidence interval [CI], 5.9 to 8.3) and 76.5% (95% CI, 74.0 to 78.8), respectively. The WNV RNA prevalence was 1.9% (95% CI, 1.4 to 2.9), while 14.3% (95% CI, 12.9 to 15.8) had WNV-neutralizing antibodies. In animals, the pooled seroprevalence of anti-WNV IgM and IgG was 90.3% (95% CI, 84.3 to 94.6) and 3.5% (95% CI, 1.9 to 5.8), respectively, while 20.0% (95% CI, 12.9 to 21.4) had WNV-neutralizing antibodies. Age (odds ratio [OR], 3.73; 95% CI, 1.87 to 7.45; p<0.001) and level of education (no formal education: OR, 4.31; 95% CI, 1.08 to 17.2; p<0.05; primary: OR, 7.29; 95% CI, 1.80 to 29.6; p<0.01) were significant risk factors for WNV IgM seropositivity in humans. CONCLUSIONS: The findings of this study highlight the endemicity of WNV in animals and humans in Nigeria and underscore the need for the One Health prevention and control approach.


Subject(s)
West Nile Fever/epidemiology , Animals , Humans , Nigeria/epidemiology , Prevalence , West Nile Fever/veterinary
4.
Infez Med ; 28(2): 166-173, 2020.
Article in English | MEDLINE | ID: mdl-32275258

ABSTRACT

The world has been thrown into pandemonium due to the recent Coronavirus Disease-19 (COVID-19) pandemic. Early available clinical data have indicated that geriatric persons cum those with comorbidity such as cardiovascular, metabolic and immunological disorders suffered severe form of COVID-19. All countries and territories of the world are currently exploring available strategies to control the pandemic with the hope to significantly minimize its morbidity and mortality rate. This present study critically reviewed available and latest research progress on the genetics and ecology of SARS-CoV-2, as well as the influence of climatic factors on the spread of COVID-19, and thus, discussed how these concepts could be harnessed for COVID-19 control and further scientific advancements in resolving the pandemic.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Angiotensin-Converting Enzyme 2 , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , Climate , Coronavirus Infections/physiopathology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Ecosystem , Environmental Microbiology , Humans , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/physiopathology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Receptor, Angiotensin, Type 2/metabolism , SARS-CoV-2
5.
Sci Rep ; 6: 25280, 2016 05 03.
Article in English | MEDLINE | ID: mdl-27140942

ABSTRACT

Lassa virus (LASV) causes a deadly haemorrhagic fever in humans, killing several thousand people in West Africa annually. For 40 years, the Natal multimammate rat, Mastomys natalensis, has been assumed to be the sole host of LASV. We found evidence that LASV is also hosted by other rodent species: the African wood mouse Hylomyscus pamfi in Nigeria, and the Guinea multimammate mouse Mastomys erythroleucus in both Nigeria and Guinea. Virus strains from these animals were isolated in the BSL-4 laboratory and fully sequenced. Phylogenetic analyses of viral genes coding for glycoprotein, nucleoprotein, polymerase and matrix protein show that Lassa strains detected in M. erythroleucus belong to lineages III and IV. The strain from H. pamfi clusters close to lineage I (for S gene) and between II &III (for L gene). Discovery of new rodent hosts has implications for LASV evolution and its spread into new areas within West Africa.


Subject(s)
Host Specificity , Lassa virus/isolation & purification , Lassa virus/physiology , Murinae/virology , Africa , Animals , Genotype , Guinea , Lassa virus/classification , Lassa virus/genetics , Nigeria , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...