Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Neural Syst Rehabil Eng ; 20(1): 48-57, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22186963

ABSTRACT

Both the American Heart Association and the VA/DoD endorse upper-extremity robot-mediated rehabilitation therapy for stroke care. However, we do not know yet how to optimize therapy for a particular patient's needs. Here, we explore whether we must train patients for each functional task that they must perform during their activities of daily living or alternatively capacitate patients to perform a class of tasks and have therapists assist them later in translating the observed gains into activities of daily living. The former implies that motor adaptation is a better model for motor recovery. The latter implies that motor learning (which allows for generalization) is a better model for motor recovery. We quantified trained and untrained movements performed by 158 recovering stroke patients via 13 metrics, including movement smoothness and submovements. Improvements were observed both in trained and untrained movements suggesting that generalization occurred. Our findings suggest that, as motor recovery progresses, an internal representation of the task is rebuilt by the brain in a process that better resembles motor learning than motor adaptation. Our findings highlight possible improvements for therapeutic algorithms design, suggesting sparse-activity-set training should suffice over exhaustive sets of task specific training.


Subject(s)
Adaptation, Physiological/physiology , Learning/physiology , Motor Skills/physiology , Recovery of Function/physiology , Robotics , Stroke Rehabilitation , Activities of Daily Living , Aged , Algorithms , Biomechanical Phenomena , Chronic Disease , Exercise Therapy , Female , Generalization, Psychological , Humans , Male , Middle Aged , Movement/physiology
2.
J Neurophysiol ; 98(2): 757-68, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17553941

ABSTRACT

Synergies are thought to be the building blocks of vertebrate movements. The inability to execute synergies in properly timed and graded fashion precludes adequate functional motor performance. In humans with stroke, abnormal synergies are a sign of persistent neurological deficit and result in loss of independent joint control, which disrupts the kinematics of voluntary movements. This study aimed at characterizing training-related changes in synergies apparent from movement kinematics and, specifically, at assessing: 1) the extent to which they characterize recovery and 2) whether they follow a pattern of augmentation of existing abnormal synergies or, conversely, are characterized by a process of extinction of the abnormal synergies. We used a robotic therapy device to train and analyze paretic arm movements of 117 persons with chronic stroke. In a task for which they received no training, subjects were better able to draw circles by discharge. Comparison with performance at admission on kinematic robot-derived metrics showed that subjects were able to execute shoulder and elbow joint movements with significantly greater independence or, using the clinical description, with more isolated control. We argue that the changes we observed in the proposed metrics reflect changes in synergies. We show that they capture a significant portion of the recovery process, as measured by the clinical Fugl-Meyer scale. A process of "tuning" or augmentation of existing abnormal synergies, not extinction of the abnormal synergies, appears to underlie recovery.


Subject(s)
Exercise Therapy/methods , Movement/physiology , Psychomotor Performance/physiology , Stroke Rehabilitation , Stroke/physiopathology , Arm/physiology , Biomechanical Phenomena , Chronic Disease , Female , Humans , Male , Middle Aged , Recovery of Function/physiology , Residence Characteristics , Robotics
SELECTION OF CITATIONS
SEARCH DETAIL
...