Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 10946, 2018 Jul 19.
Article in English | MEDLINE | ID: mdl-30026501

ABSTRACT

Multiple functionality of tungsten polyoxometalate (POM) has been achieved applying it as interfacial layer for solution processed high performance In2O3 thin film transistors, which results in overall improvement of device performance. This approach not only reduces off-current of the device by more than two orders of magnitude, but also leads to a threshold voltage reduction, as well as significantly enhances the mobility through facilitated charge injection from the electrode to the active layer. Such a mechanism has been elucidated through morphological and spectroscopic studies.

2.
Opt Express ; 24(24): 27184-27198, 2016 Nov 28.
Article in English | MEDLINE | ID: mdl-27906293

ABSTRACT

Three-dimensional Langmuir-Blodgett films made of silica beads are theoretically and experimentally investigated in order to improve the relatively small efficiency of blue OLEDs. Using films made of 5 layers of beads, we fabricated OLEDs emitting at 476 nm, and measured a gain of around 40% on their external quantum efficiency. An optical model has been developed to accurately handle the fact that the organic emitting layer and the photonic extraction layer are separated by a distance greater than 1000 wavelength. The latter also permits to describe rapidly this three-dimensional optical OLED cavity, without redoing all the numerical simulations when the optical properties of the organic layers are changed (material index, thicknesses).

3.
Opt Express ; 22 Suppl 5: A1229-36, 2014 Aug 25.
Article in English | MEDLINE | ID: mdl-25322177

ABSTRACT

We study the optical properties of a 2D Photonic Crystal (PC) inserted in the upper ITO electrode of a classical P3HT:PCBM solar architecture with an ultra-thin active layer. First, we analyze the optical response of the system when only the active layer is supposed to absorb light. This allows us to observe clear photonic crystal resonances in the absorption spectrum, which increase the cell efficiency even if the period of the PC is higher than the wavelength. This is in apparent contradiction with the common belief that PC should work in subwavelength regime. Then, by turning to a real system (with optical losses in all the layers), an optimized PC design is proposed, where the maximum of efficiency is obtained for a PC period of 1200 nm, much larger than visible wavelength.

SELECTION OF CITATIONS
SEARCH DETAIL
...