Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(18)2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36146197

ABSTRACT

In this paper, we describe DECAL, a prototype Monolithic Active Pixel Sensor (MAPS) device designed to demonstrate the feasibility of both digital calorimetry and reconfigurability in ASICs for particle physics. The goal of this architecture is to help reduce the development and manufacturing costs of detectors for future colliders by developing a chip that can operate both as a digital silicon calorimeter and a tracking chip. The prototype sensor consists of a matrix of 64 × 64 55 µm pixels, and provides a readout at 40 MHz of the number of particles which have struck the matrix in the preceding 25 ns. It can be configured to report this as a total sum across the sensor (equivalent to the pad of an analogue calorimeter) or the sum per column (equivalent to a traditional strip detector). The design and operation of the sensor are described, and the results of chip characterisation are reported and compared to simulations.


Subject(s)
Silicon , Calorimetry
2.
Sensors (Basel) ; 21(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34577377

ABSTRACT

Highly accurate, quantitative analyses of mixtures of hydrogen isotopologues-both the stable species, H2, D2, and HD, and the radioactive species, T2, HT, and DT-are of great importance in fields as diverse as deuterium-tritium fusion, neutrino mass measurements using tritium ß-decay, or for photonuclear experiments in which hydrogen-deuterium targets are used. In this publication we describe a production, handling, and analysis facility capable of fabricating well-defined gas samples, which may contain any of the stable and radioactive hydrogen isotopologues, with sub-percent accuracy for the relative species concentrations. The production is based on precise manometric gas mixing of H2, D2, and T2. The heteronuclear isotopologues HD, HT, and DT are generated via controlled, in-line catalytic reaction or by ß-induced self-equilibration, respectively. The analysis was carried out using an in-line intensity- and wavelength-calibrated Raman spectroscopy system. This allows for continuous monitoring of the composition of the circulating gas during the self-equilibration or catalytic evolution phases. During all procedures, effects, such as exchange reactions with wall materials, were considered with care. Together with measurement statistics, these and other systematic effects were included in the determination of composition uncertainties of the generated reference gas samples. Measurement and calibration accuracy at the level of 1% was achieved.


Subject(s)
Gases , Hydrogen , Calibration , Catalysis , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...