Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 11(19): 5043-5051, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-34122961

ABSTRACT

A cationic nickel complex of the bis(8-quinolyl)(3,5-di-tert-butylphenoxy)phosphine (NPN) ligand, [(NPN)NiCl]+, is a precursor to efficient catalysts for the hydrosilation of alkenes with a variety of hydrosilanes under mild conditions and low catalyst loadings. DFT studies reveal the presence of two coupled catalytic cycles based on [(NPN)NiH]+ and [(NPN)NiSiR3]+ active species, with the latter being more efficient for producing the product. The preferred silyl-based catalysis is not due to a more facile insertion of alkene into the Ni-Si (vs. Ni-H) bond, but by consistent and efficient conversions of the hydride to the silyl complex.

2.
Dalton Trans ; 42(6): 1991-5, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-23283146

ABSTRACT

Tantalum polyhedral oligosilsesquioxane (POSS) complexes have been synthesised and characterized. X-ray structures of these complexes revealed that the coordination number of the tantalum center greatly affects the cube-like silsesquioxane framework.

3.
Chem Commun (Camb) ; 48(62): 7690-2, 2012 Aug 11.
Article in English | MEDLINE | ID: mdl-22740052

ABSTRACT

Two synthetic routes to cationic ruthenium germylene complexes are described. A hydrogen-substituted germylene complex undergoes various additions of the Ge-H bond to alkene and alkyne substrates.

4.
Dalton Trans ; 41(1): 73-82, 2012 Jan 07.
Article in English | MEDLINE | ID: mdl-22031098

ABSTRACT

Proposed electrocatalytic proton reduction intermediates of hydrogenase mimics were synthesized, observed, and studied computationally. A new mechanism for H(2) generation appears to involve Fe(2)(CO)(6)(1,2-S(2)C(6)H(4)) (3), the dianions {[1,2-S(2)C(6)H(4)][Fe(CO)(3)(µ-CO)Fe(CO)(2)](2-) (3(2-)), the bridging hydride {[1,2-S(2)C(6)H(4)][Fe(CO)(3)(µ-CO)(µ-H)Fe(CO)(2)]}(-), 3H(-)(bridging), and the terminal hydride 3H(-)(term-stag), {[1,2-S(2)C(6)H(4)][HFe(CO)(3)Fe(CO)(3)]}(-), as intermediates. The dimeric sodium derivative of 3(2-), {[Na(2)(THF)(OEt(2))(3)][3(2-)]}(2) (4) was isolated from reaction of Fe(2)(CO)(6)(1,2-S(2)C(6)H(4)) (3) with excess sodium and was characterized by X-ray crystallography. It possesses a bridging CO and an unsymmetrically bridging dithiolate ligand. Complex 4 reacts with 4 equiv. of triflic or benzoic acid (2 equiv. per Fe center) to generate H(2) and 3 in 75% and 60% yields, respectively. Reaction of 4 with 2 equiv. of benzoic acid generated two hydrides in a 1.7 : 1 ratio (by (1)H NMR spectroscopy). Chemical shift calculations on geometry optimized structures of possible hydride isomers strongly suggest that the main product, 3H(-)(bridging), possesses a bridging hydride ligand, while the minor product is a terminal hydride, 3H(-)(term-stag). Computational studies support a catalytic proton reduction mechanism involving a two-electron reduction of 3 that severs an Fe-S bond to generate a dangling thiolate and an electron rich Fe center. The latter iron center is the initial site of protonation, and this event is followed by protonation at the dangling thiolate to give the thiol thiolate [Fe(2)H(CO)(6)(1,2-SHSC(6)H(4))]. This species then undergoes an intramolecular acid-base reaction to form a dihydrogen complex that loses H(2) and regenerates 3.


Subject(s)
Biomimetic Materials/chemistry , Coordination Complexes/chemistry , Ferrous Compounds/chemistry , Hydrogenase/chemistry , Models, Molecular , Catalysis , Crystallography, X-Ray , Isomerism , Molecular Conformation , Oxidation-Reduction , Protons , Thermodynamics
6.
Mol Pharm ; 4(3): 317-22, 2007.
Article in English | MEDLINE | ID: mdl-17497799

ABSTRACT

A structural analysis of over 80 salts and cocrystals synthesized from equimolar amounts of carboxylic acids and N-heterocycles demonstrates that salt formation as a result of proton transfer from the acid to the base frequently (11/24; 45%) results in a lattice with an unpredictable chemical (solvate) or stoichiometric composition. However, if no proton transfer takes place and the result is a molecular cocrystal, a crystal lattice with an unexpected chemical content or stoichiometry is much less likely (3/61; 5%). These results indicate that the process of converting a neutral carboxylic acid into a carboxylate anion can have important structural consequences that make structure prediction and targeted supramolecular synthesis of salts much more difficult than of cocrystals. Consequently, cocrystals may offer new opportunities for producing a greater diversity of solid forms of drug substances that exhibit the appropriate balance of critical properties for development into a viable and effective drug product.


Subject(s)
Salts/chemistry , Carboxylic Acids/chemistry , Crystallization , Heterocyclic Compounds/chemistry , Hydrogen Bonding , Models, Molecular , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...