Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Health Sci Rep ; 6(7): e1424, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37484057

ABSTRACT

Background and Aims: Trauma patients often suffer from multiple injuries and require undergoing various radiography which is referred to as multifield radiographic examinations. Protective measures may be ignored for these examinations due to stressful emergency situations or patients' conditions. This study was conducted to evaluate the scattered doses received by the pelvis during different common multifield radiographic examinations with an emphasis on field size adjustment. Methods: A whole-body phantom, PBU-50, resembling the body mass, was used to carry out the common examinations for trauma patients (extremities, skull, chest, abdomen, pelvis, femur, and lumbar radiography), using a Pars Pad X-ray machine. To measure the primary entrance skin doses, three calibrated GR 200 thermoluminescence dosimeter (TLD) chips were placed in the central X-ray beam of scanned organs. Three TLDs were also placed on the pelvis symphysis pubis to measure the scattered dose received by the pelvis due to each carried-out radiography for standard and clinically used field sizes. A Harshaw 3500 TLD Reader was used to read the chips. TLD readouts (nano-Coulomb) were converted to dose (milli Gray [mGy]) using the predefined calibration curve. Results: The scattered doses to the pelvis due to scanning a single organ differed from 0.80 to 1.70, and 0.82 to 4.09 mGy for standard and clinically used field sizes, respectively. The scattered doses to the pelvis in multifield examinations varied from 0.80 to 8.43 and 0.82 to 13.6 mGy for standard and clinically used field sizes, respectively, depending on the number of scanned organs and their distances from the pelvis. Conclusions: Multiple and repeated radiographs combined with insufficient protective measures can increase the patient's dose. The findings indicate that the scattered doses received by the pelvis can exceed the reference values in multifield radiography, especially if the radiation field is not restricted properly to the scanned organ.

2.
Indian J Otolaryngol Head Neck Surg ; 75(Suppl 1): 409-415, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37206773

ABSTRACT

Tinnitus is usually associated with different comorbidities such as anxiety, annoyance and depression. Evidences have targeted two main places for tinnitus treatment, namely the auditory cortex and the dorsolateral prefrontal cortex (DLPFC). Transcranial direct current stimulation (tDCS) has been reportedly associated with improvement of cognitive functions in individuals. This study was conducted to evaluate the therapeutic effects of repeated sessions of anodal bifrontal tDCS on tinnitus symptoms. Furthermore, the tDCS impacts on the comorbid depression and anxiety of the patients were investigated. Forty-two voluntaries that suffers from chronic tinnitus were randomly assigned into "real tDCS" (n = 21) and "sham tDCS" (n = 21) groups. The tDCS group, received tDCS with the protocol consisted of 2 mA current, daily one session of 20 min, 6 consecutive days per week and for 4 consecutive weeks. The tinnitus handicap inventory (THI) scale, was measured before the first tDCS session and at one-week and two weeks follow-up. With the same intervals; the distress-related tinnitus was evaluated using visual analogue scale. Depression and anxiety scores were also measured using the Beck depression inventory and Beck anxiety inventory scales, respectively. Our findings indicated that THI score, depression and anxiety level has been gradually diminished across subsequent measurement intervals. We also find significant reduction of distress-related tinnitus in the real-tDCS group after treatment. We conclude that application of tDCS to the bilateral DLPFC region alleviates chronic tinnitus and it should be considered in patients with refractory tinnitus.

3.
Med J Islam Repub Iran ; 34: 141, 2020.
Article in English | MEDLINE | ID: mdl-33437737

ABSTRACT

Background: The Hoveyzeh cohort study (HCS) is a population-based cohort study that conducted in Hoveyzeh County (South-west Iran). HCS focus on common chronic diseases, disorders and risk factors of NCDs in the Arab ethnicity. Methods: A total number of 10009 participants (35-70 years old) were recruited in this prospective cohort study from May 2016 to August 2018. The HCS data were gathered by trained interviewer through interviewer-administered questionnaires. Also anthropometric measurements, physical examinations, clinical assessments, ophthalmology evaluation, auditory examinations, respiratory and cardiovascular assessments was conducted by means of standard instruments. Biological samples including blood, urine, hair, and nail collected and stored in the biobank. Results: The overall participation rate was 82.7%. The prevalence of obesity was 27.4% in males and 47% in females. Cigarette smoking prevalence was 20.9% (40.6 % in men and 7.6 % in women). Prevalence of major non communicable diseases such as diabetes, hypertension, metabolic syndrome, cardiac ischemic, myocardial infarction and stroke was 22.2%, 26.4% 31.9 %, 13.6%, 1.85% and 1.6% respectively. Conclusion: Considering the high prevalence of obesity and smoking in the population of Hoveyzeh and since the important role of these risk factors in development of common non communicable diseases, this issue should be taken into consideration and the necessary interventions in this context must be considered to modify lifestyle. The HCS is the only comprehensive cohort in the region, enabling it to provide valuable evidence about NCDs for a wide geographical area covering millions of people in both Iran and Iraq.

4.
Drug Dev Ind Pharm ; 44(5): 861-867, 2018 May.
Article in English | MEDLINE | ID: mdl-29235889

ABSTRACT

The aim of the present research was to evaluate the impact of coating layers on release profile from enteric coated dosage forms. Capsules were coated with Eudragit FS 30D using dipping method. The drug profile was evaluated in both phosphate buffer and Hank's solutions. Utilization X-ray imaging, gastrointestinal transmission of enteric coated capsules was traced in rats. According to the results, no release of the drug was found at pH 1.2, and the extent of release drug in pH 6.8 medium was decreased by adding the coating layers. The results indicated single-layer coated capsules in phosphate buffer were significantly higher than that in Hank's solution. However, no significant difference was observed from capsules with three coating layers in two different dissolution media. X-ray imaging showed that enteric coated capsules were intact in the stomach and in the small intestine, while disintegrated in the colon.


Subject(s)
Capsules/chemistry , Colon/metabolism , Polymethacrylic Acids/pharmacology , Animals , Chemistry, Pharmaceutical , Colon/chemistry , Drug Delivery Systems/methods , Drug Liberation , Polymethacrylic Acids/chemistry , Rats
5.
Electron Physician ; 9(4): 4171-4179, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28607652

ABSTRACT

INTRODUCTION: In radiotherapy, megaelectron volt (MeV) electrons are employed for treatment of superficial cancers. Magnetic fields can be used for deflection and deformation of the electron flow. A magnetic field is composed of non-uniform permanent magnets. The primary electrons are not mono-energetic and completely parallel. Calculation of electron beam deflection requires using complex mathematical methods. In this study, a device was made to apply a magnetic field to an electron beam and the path of electrons was simulated in the magnetic field using finite element method. METHODS: A mini-applicator equipped with two neodymium permanent magnets was designed that enables tuning the distance between magnets. This device was placed in a standard applicator of Varian 2100 CD linear accelerator. The mini-applicator was simulated in CST Studio finite element software. Deflection angle and displacement of the electron beam was calculated after passing through the magnetic field. By determining a 2 to 5cm distance between two poles, various intensities of transverse magnetic field was created. The accelerator head was turned so that the deflected electrons became vertical to the water surface. To measure the displacement of the electron beam, EBT2 GafChromic films were employed. After being exposed, the films were scanned using HP G3010 reflection scanner and their optical density was extracted using programming in MATLAB environment. Displacement of the electron beam was compared with results of simulation after applying the magnetic field. RESULTS: Simulation results of the magnetic field showed good agreement with measured values. Maximum deflection angle for a 12 MeV beam was 32.9° and minimum deflection for 15 MeV was 12.1°. Measurement with the film showed precision of simulation in predicting the amount of displacement in the electron beam. CONCLUSION: A magnetic mini-applicator was made and simulated using finite element method. Deflection angle and displacement of electron beam were calculated. With the method used in this study, a good prediction of the path of high-energy electrons was made before they entered the body.

6.
Electron Physician ; 9(2): 3845-3856, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28465817

ABSTRACT

INTRODUCTION: Since the heart of the electronic brachytherapy system is a tube of a miniature x-ray and due to the increasing use of electronic brachytherapy, there is an urgent need for acquiring knowledge about the X-ray spectrum produced, and distribution of x-ray dose. This study aimed to assess the optimal target thickness (TT), the X-ray source spectrum, and the absorbed dose of two miniature sources of hemispherical and hemispherical-conical used in electronic brachytherapy systems, through a Monte Carlo simulation. METHODS: Considering the advantages of MCNPX Code (2.6.0), two input files corresponding to the characteristics of the investigated miniature sources were prepared for this code and then were used for simulation. The optimal thickness (OT) of gold and tungsten targets was determined for the energy levels of 40, 45, and 50 kilo-electron-volts. RESULTS: In this study, the values of the size of the optimal thickness of 0.92, 1.01 and 1.06 µ for gold target and values of 0.99, 1.08 and 1.34 µ for tungsten target were obtained for energies 40, 45 and 50 keV that using these values, the optimum thickness of 0.92, X-ray spectrum within and outside targets, axial and radial doses for the used energy were calculated for two miniature sources. CONCLUSION: It was found that the energy of incident electron, target shape, cross-sectional area of the produced bremsstrahlung, atomic number of materials constituting of the target and output window are the factors with the greatest impacts on the produced X-ray spectrum and the absorbed dose.

7.
J Clin Med Res ; 9(2): 124-129, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28090228

ABSTRACT

BACKGROUND: This study aimed to evaluate the radiation dose received by premature neonates using diagnostic radiographies. METHODS: This cross-sectional study was conducted on 116 premature neonates with gestational age from 25 to 37 weeks; with the diagnosis of neonatal respiratory distress syndrome (NRDS) and tachypnea, they were admitted to a neonatal intensive care unit (NICU) at Ahvaz Imam Khomeini Hospital in 2015. For assessing the dose received, the model GR-200 thermoluminescent dosimeter (TLD) was used. For each premature neonate under radiation, three TLDs separately (one for each) were placed on surfaces of Ch1, T1, and G1 (chest, thyroid, and gonad of first newborn, respectively). Moreover, for the adjacent neonate at a distance of 60 - 100 cm, two TLDs were laid in the surfaces of T2 and G2 (thyroid and gonad of second newborn, respectively). The dose received by TLDs for any baby and the adjacent neonate under the entrance surface dose (ESD) was estimated. RESULTS: The mean of neonates' weight under study was 1,950.78 ± 484.9 g. During the hospitalization period, minimum one and maximum three radiographies were done for any premature neonate. The doses received in the premature neonates to Ch1, T1 and G1 were 0.08 ± 0.01, 0.06 ± 0.01, and 0.05 ± 0.01 mSv, respectively and for adjacent infants for T2 and G2 were 0.003 ± 0.001 and 0.002 ± 0.0009 mSv, respectively. CONCLUSIONS: In the study, radiation dose received by organs at risk of premature neonates was lower than the international criteria and standards, therefore, also due to the lack of radiation damage threshold, to limit collimator, and the use of the proper filtration, kilovoltage and time during radiography of premature neonates are recommended.

8.
Asian Pac J Cancer Prev ; 17(1): 153-7, 2016.
Article in English | MEDLINE | ID: mdl-26838202

ABSTRACT

BACKGROUND: In radiation therapy, estimation of surface doses is clinically important. This study aimed to obtain an analytical relationship to determine the skin surface dose, kerma and the depth of maximum dose, with energies of 6 and 18 megavoltage (MV). MATERIALS AND METHODS: To obtain the dose on the surface of skin, using the relationship between dose and kerma and solving differential equations governing the two quantities, a general relationship of dose changes relative to the depth was obtained. By dosimetry all the standard square fields of 5x5cm to 40x40cm, an equation similar to response to differential equations of the dose and kerma were fitted on the measurements for any field size and energy. Applying two conditions: a) equality of the area under dose distribution and kerma changes in versus depth in 6 and 18 MV, b) equality of the kerma and dose at x=dmax and using these results, coefficients of the obtained analytical relationship were determined. By putting the depth of zero in the relation, amount of PDD and kerma on the surface of the skin, could be obtained. RESULTS: Using the MATLAB software, an exponential binomial function with R-Square >0.9953 was determined for any field size and depth in two energy modes 6 and 18MV, the surface PDD and kerma was obtained and both of them increase due to the increase of the field, but they reduce due to increased energy and from the obtained relation, depth of maximum dose can be determined. CONCLUSIONS: Using this analytical formula, one can find the skin surface dose, kerma and thickness of the buildup region.


Subject(s)
Photons , Radiation Dosage , Radiotherapy Dosage , Radiotherapy , Skin/radiation effects , Humans , Particle Accelerators , Software
9.
Asian Pac J Cancer Prev ; 17(1): 197-200, 2016.
Article in English | MEDLINE | ID: mdl-26838209

ABSTRACT

BACKGROUND: Wedge filters are commonly used in radiation oncology for eliminating hot spots and creating a uniform dose distribution in optimizing isodose curves in the target volume for clinical aspects. These are some limited standard physical wedges (15°, 30°, 45°, 60°),or creating an arbitrary wedge angle, like motorized wedge or dynamic wedge,... The new formulation is presented by the combination of wedge fields for determining an arbitrary effective wedge angles. The isodose curves also are derived for these wedges. MATERIALS AND METHODS: we performed the dosimetry of Varian Clinac 2100C/D with Scanditronix Wellhofer water blue phantom, CU500E, OmniPro - Accept software and 0.13cc ionization chamber for 6Mv photon beam in depth of 10cm (reference depth) for universal physical wedges (15°, 30°, 45°, and 60°) and reference field 10x10cm2. By combining the isodose curve standard wedge fields with compatible weighting dose for each field, the effective isodose curve is calculated for any wedge angle. RESULTS: The relation between a given effective wedge angle and the weighting of each combining wedge fields was derived. A good agreement was found between the measured and calculated wedge angles and the maximum deviation did not exceed 3°. The difference between the measured and calculated data decreased when the combined wedge angles were closer. The results are in agreement with the motorized single wedge appliance in the literature. CONCLUSIONS: This technique showed that the effective wedge angle that is obtained from this method is adequate for clinical applications and the motorized wedge formalism is a special case of this consideration.


Subject(s)
Neoplasms/radiotherapy , Photons , Radiotherapy Planning, Computer-Assisted/methods , Body Weight/radiation effects , Humans , Particle Accelerators , Phantoms, Imaging , Physical Examination/methods , Radiotherapy Dosage , Software
10.
Asian Pac J Cancer Prev ; 16(17): 7785-8, 2015.
Article in English | MEDLINE | ID: mdl-26625798

ABSTRACT

Utilization of high energy photons (>10 MV) with an optimal weight using a mixed energy technique is a practical way to generate a homogenous dose distribution while maintaining adequate target coverage in intact breast radiotherapy. This study represents a model for estimation of this optimal weight for day to day clinical usage. For this purpose, treatment planning computed tomography scans of thirty-three consecutive early stage breast cancer patients following breast conservation surgery were analyzed. After delineation of the breast clinical target volume (CTV) and placing opposed wedge paired isocenteric tangential portals, dosimeteric calculations were conducted and dose volume histograms (DVHs) were generated, first with pure 6 MV photons and then these calculations were repeated ten times with incorporating 18 MV photons (ten percent increase in weight per step) in each individual patient. For each calculation two indexes including maximum dose in the breast CTV (Dmax) and the volume of CTV which covered with 95% Isodose line (VCTV, 95%IDL) were measured according to the DVH data and then normalized values were plotted in a graph. The optimal weight of 18 MV photons was defined as the intersection point of Dmax and VCTV, 95%IDL graphs. For creating a model to predict this optimal weight multiple linear regression analysis was used based on some of the breast and tangential field parameters. The best fitting model for prediction of 18 MV photons optimal weight in breast radiotherapy using mixed energy technique, incorporated chest wall separation plus central lung distance (Adjusted R2=0.776). In conclusion, this study represents a model for the estimation of optimal beam weighting in breast radiotherapy using mixed photon energy technique for routine day to day clinical usage.


Subject(s)
Breast Neoplasms/radiotherapy , Breast/pathology , Photons/therapeutic use , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Breast/surgery , Breast Neoplasms/surgery , Female , Humans , Mastectomy, Segmental , Radiotherapy Dosage , Tomography, X-Ray Computed
11.
Asian Pac J Cancer Prev ; 16(17): 7795-801, 2015.
Article in English | MEDLINE | ID: mdl-26625800

ABSTRACT

The aim of the present research was to establish primary characteristics of electron beams for a Varian 2100C/D linear accelerator with recently developed PRIMO Monte Carlo software and to verify relations between electron energy and dose distribution. To maintain conformity of simulated and measured dose curves within 1%/1mm, mean energy, Full Width at Half Maximum (FWHM) of energy and focal spot FWHM of initial beam were changed iteratively. Mean and most probable energies were extracted from validated phase spaces and compared with related empirical equation results. To explain the importance of correct estimation of primary energy on a clinical case, computed tomography images of a thorax phantom were imported in PRIMO. Dose distributions and dose volume histogram (DVH) curves were compared between validated and artificial cases with overestimated energy. Initial mean energies were obtained of 6.68, 9.73, 13.2 and 16.4 MeV for 6, 9, 12 and 15 nominal energies, respectively. Energy FWHM reduced with increase in energy. Three mm focal spot FWHM for 9 MeV and 4 mm for other energies made proper matches of simulated and measured profiles. In addition, the maximum difference of calculated mean electrons energy at the phantom surface with empirical equation was 2.2 percent. Finally, clear differences in DVH curves of validated and artificial energy were observed as heterogeneity indexes were 0.15 for 7.21 MeV and 0.25 for 6.68 MeV. The Monte Carlo model presented in PRIMO for Varian 2100 CD was precisely validated. IAEA polynomial equations estimated mean energy more accurately than a known linear one. Small displacement of R50 changed DVH curves and homogeneity indexes. PRIMO is a user-friendly software which has suitable capabilities to calculate dose distribution in water phantoms or computerized tomographic volumes accurately.


Subject(s)
Algorithms , Electrons/therapeutic use , Particle Accelerators , Radiosurgery/methods , Humans , Monte Carlo Method , Phantoms, Imaging , Radiosurgery/instrumentation , Radiotherapy Dosage , Software , Thorax , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...