Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37873186

ABSTRACT

Background: Spatial transcriptomics involves studying the spatial organization of gene expression within tissues, offering insights into the molecular diversity of tumors. While spatial gene expression is commonly amalgamated from 1-10 cells across 50-micron spots, recent methods have demonstrated the capability to disaggregate this information at subspot resolution by leveraging both expression and histological patterns. However, elucidating such information from histology alone presents a significant challenge but if solved can better permit spatial molecular analysis at cellular resolution for instances where Visium data is not available, reducing study costs. This study explores integrating single-cell histological and transcriptomic data to infer spatial mRNA expression patterns in whole slide images collected from a cohort of stage pT3 colorectal cancer patients. A cell graph neural network algorithm was developed to align histological information extracted from detected cells with single cell RNA patterns through optimal transport methods, facilitating the analysis of cellular groupings and gene relationships. This approach leveraged spot-level expression as an intermediary to co-map histological and transcriptomic information at the single-cell level. Results: Our study demonstrated that single-cell transcriptional heterogeneity within a spot could be predicted from histological markers extracted from cells detected within a spot. Furthermore, our model exhibited proficiency in delineating overarching gene expression patterns across whole-slide images. This approach compared favorably to traditional patch-based computer vision methods as well as other methods which did not incorporate single cell expression during the model fitting procedures. Topological nuances of single-cell expression within a Visium spot were preserved using the developed methodology. Conclusion: This innovative approach augments the resolution of spatial molecular assays utilizing histology as a sole input through synergistic co-mapping of histological and transcriptomic datasets at the single-cell level, anchored by spatial transcriptomics. While initial results are promising, they warrant rigorous validation. This includes collaborating with pathologists for precise spatial identification of distinct cell types and utilizing sophisticated assays, such as Xenium, to attain deeper subcellular insights.

2.
medRxiv ; 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37873287

ABSTRACT

The application of deep learning methods to spatial transcriptomics has shown promise in unraveling the complex relationships between gene expression patterns and tissue architecture as they pertain to various pathological conditions. Deep learning methods that can infer gene expression patterns directly from tissue histomorphology can expand the capability to discern spatial molecular markers within tissue slides. However, current methods utilizing these techniques are plagued by substantial variability in tissue preparation and characteristics, which can hinder the broader adoption of these tools. Furthermore, training deep learning models using spatial transcriptomics on small study cohorts remains a costly endeavor. Necessitating novel tissue preparation processes enhance assay reliability, resolution, and scalability. This study investigated the impact of an enhanced specimen processing workflow for facilitating a deep learning-based spatial transcriptomics assessment. The enhanced workflow leveraged the flexibility of the Visium CytAssist assay to permit automated H&E staining (e.g., Leica Bond) of tissue slides, whole-slide imaging at 40x-resolution, and multiplexing of tissue sections from multiple patients within individual capture areas for spatial transcriptomics profiling. Using a cohort of thirteen pT3 stage colorectal cancer (CRC) patients, we compared the efficacy of deep learning models trained on slide prepared using an enhanced workflow as compared to the traditional workflow which leverages manual tissue staining and standard imaging of tissue slides. Leveraging Inceptionv3 neural networks, we aimed to predict gene expression patterns across matched serial tissue sections, each stemming from a distinct workflow but aligned based on persistent histological structures. Findings indicate that the enhanced workflow considerably outperformed the traditional spatial transcriptomics workflow. Gene expression profiles predicted from enhanced tissue slides also yielded expression patterns more topologically consistent with the ground truth. This led to enhanced statistical precision in pinpointing biomarkers associated with distinct spatial structures. These insights can potentially elevate diagnostic and prognostic biomarker detection by broadening the range of spatial molecular markers linked to metastasis and recurrence. Future endeavors will further explore these findings to enrich our comprehension of various diseases and uncover molecular pathways with greater nuance. Combining deep learning with spatial transcriptomics provides a compelling avenue to enrich our understanding of tumor biology and improve clinical outcomes. For results of the highest fidelity, however, effective specimen processing is crucial, and fostering collaboration between histotechnicians, pathologists, and genomics specialists is essential to herald this new era in spatial transcriptomics-driven cancer research.

SELECTION OF CITATIONS
SEARCH DETAIL
...