Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 129(22): 227701, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36493424

ABSTRACT

Electrostatic charging affects the many-body spectrum of Andreev states, yet its influence on their microwave properties has not been elucidated. We developed a circuit quantum electrodynamics probe that, in addition to transition spectroscopy, measures the microwave susceptibility of different states of a semiconductor nanowire weak link with a single dominant (spin-degenerate) Andreev level. We found that the microwave susceptibility does not exhibit a particle-hole symmetry, which we qualitatively explain as an influence of Coulomb interaction. Moreover, our state-selective measurement reveals a large, π-phase shifted contribution to the response common to all many-body states which can be interpreted as arising from a phase-dependent continuum in the superconducting density of states.


Subject(s)
Static Electricity
2.
Science ; 373(6553): 430-433, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34437115

ABSTRACT

Two promising architectures for solid-state quantum information processing are based on electron spins electrostatically confined in semiconductor quantum dots and the collective electrodynamic modes of superconducting circuits. Superconducting electrodynamic qubits involve macroscopic numbers of electrons and offer the advantage of larger coupling, whereas semiconductor spin qubits involve individual electrons trapped in microscopic volumes but are more difficult to link. We combined beneficial aspects of both platforms in the Andreev spin qubit: the spin degree of freedom of an electronic quasiparticle trapped in the supercurrent-carrying Andreev levels of a Josephson semiconductor nanowire. We performed coherent spin manipulation by combining single-shot circuit-quantum-electrodynamics readout and spin-flipping Raman transitions and found a spin-flip time T S = 17 microseconds and a spin coherence time T 2E = 52 nanoseconds. These results herald a regime of supercurrent-mediated coherent spin-photon coupling at the single-quantum level.

3.
Phys Rev Lett ; 117(11): 116804, 2016 Sep 09.
Article in English | MEDLINE | ID: mdl-27661712

ABSTRACT

Twisted bilayer graphene (TBLG) is one of the simplest van der Waals heterostructures, yet it yields a complex electronic system with intricate interplay between moiré physics and interlayer hybridization effects. We report on electronic transport measurements of high mobility small angle TBLG devices showing clear evidence for insulating states at the superlattice band edges, with thermal activation gaps several times larger than theoretically predicted. Moreover, Shubnikov-de Haas oscillations and tight binding calculations reveal that the band structure consists of two intersecting Fermi contours whose crossing points are effectively unhybridized. We attribute this to exponentially suppressed interlayer hopping amplitudes for momentum transfers larger than the moiré wave vector.

4.
Nano Lett ; 11(5): 1988-92, 2011 May 11.
Article in English | MEDLINE | ID: mdl-21500833

ABSTRACT

The conductance of individual 1,4-benzenediamine (BDA)-Au molecular junctions is measured in different solvent environments using a scanning tunneling microscope based point-contact technique. Solvents are found to increase the conductance of these molecular junctions by as much as 50%. Using first principles calculations, we explain this increase by showing that a shift in the Au contact work function is induced by solvents binding to undercoordinated Au sites around the junction. Increasing the Au contact work function reduces the separation between the Au Fermi energy and the highest occupied molecular orbital of BDA in the junction, increasing the measured conductance. We demonstrate that the solvent-induced shift in conductance depends on the affinity of the solvent to Au binding sites and also on the induced dipole (relative to BDA) upon adsorption. Via this mechanism, molecular junction level alignment and transport properties can be statistically altered by solvent molecule binding to the contact surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...