Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop Res ; 37(6): 1409-1418, 2019 06.
Article in English | MEDLINE | ID: mdl-29926971

ABSTRACT

Progenitor cells of the tendon proper and peritenon have unique properties that could impact their utilization in tendon repair strategies. While a few markers have been found to aid in distinguishing progenitors cells from each region, there is great value in identifying more markers. In this study, we hypothesized that RNAseq could be used to improve our understanding of those markers that define these cell types. Transcriptome profiles were generated for pools of mouse Achilles tendon progenitor cells from both regions and catalogues of potential markers were generated. Moreover, common (e.g., glycoprotein, signaling, and proteinaceous extracellular matrix) and unique (e.g., cartilage development versus angiogenesis and muscle contraction) biological processes and molecular functions were described for progenitors from each region. Real-time quantitative PCR of a subset of genes was used to gain insight into the heterogeneity amongst individual progenitor colonies from each region. Markers like Scx, Mkx, Thbs4, and Wnt10a were consistently able to distinguish tendon proper progenitors from peritenon progenitors; expression variability for other genes suggested greater cell type complexity for potential peritenon progenitor markers. This is the first effort to define Achilles tendon progenitor markers by region. Further efforts to investigate the value of these cataloged markers are required by screening more individual colonies of progenitors for more markers. Clinical Significance: Findings from this study advance efforts in the discernment of cell type specific markers for tendon proper and peritenon progenitor cells; insight into marker sets could improve tracking and sorting strategies for these cells for future therapeutic strategies. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1409-1418, 2019.


Subject(s)
Achilles Tendon/cytology , Stem Cells/metabolism , Tendons/cytology , Transcriptome , Animals , Male , Mice , Real-Time Polymerase Chain Reaction
2.
Article in English | MEDLINE | ID: mdl-27110374

ABSTRACT

BACKGROUND: Valued for trainability in diverse tasks, dogs are the primary service animal used to assist individuals with disabilities. Despite their utility, many people in need of service dogs are sensitive to the primary dog allergen, Can f 1, encoded by the Lipocalin 1 gene (LCN1). Several organizations specifically breed service dogs to meet special needs and would like to reduce allergenic potential if possible. In this study, we evaluated the expression of Can f 1 protein and the inherent variability of LCN1 in two breeds used extensively as service dogs. Saliva samples from equal numbers of male and female Labrador retrievers (n = 12), golden retrievers (n = 12), and Labrador-golden crosses (n = 12) were collected 1 h after the morning meal. Can f 1 protein concentrations in the saliva were measured by ELISA, and the LCN1 5' and 3' UTRs and exons sequenced. RESULTS: There was no sex effect (p > 0.2) nor time-of-day effect; however, Can f 1 protein levels varied by breed with Labrador retrievers being lower than golden retrievers (3.18 ± 0.51 and 5.35 ± 0.52 µg/ml, respectively, p < 0.0075), and the Labrador-golden crosses having intermediate levels (3.77 ± 0.48 µg/ml). Although several novel SNPs were identified in LCN1, there were no significant breed-specific sequence differences in the gene and no association of LCN1 genotypes with Can f 1 expression. CONCLUSIONS: As service dogs, Labrador retrievers likely have lower allergenic potential and, though there were no DNA sequence differences identified, classical genetic selection on the estimated breeding values associated with salivary Can f 1 expression may further reduce that potential.

SELECTION OF CITATIONS
SEARCH DETAIL
...