Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cardiovasc Eng Technol ; 12(2): 127-143, 2021 04.
Article in English | MEDLINE | ID: mdl-33415699

ABSTRACT

PURPOSE: Variations in the vessel radius of segmented surfaces of intracranial aneurysms significantly influence the fluid velocities given by computer simulations. It is important to generate models that capture the effect of these variations in order to have a better interpretation of the numerically predicted hemodynamics. Also, it is highly relevant to develop methods that combine experimental observations with uncertainty modeling to get a closer approximation to the blood flow behavior. METHODS: This work applies polynomial chaos expansion to model the effect of geometric uncertainties on the simulated fluid velocities of intracranial aneurysms. The radius of the vessel is defined as the uncertainty variable. Proper orthogonal decomposition is applied to characterize the solution space of fluid velocities. Next, a process of projecting the 4D-Flow MRI velocities on the basis vectors followed by coefficient mapping using generalized dynamic mode decomposition enables the merging of 4D-Flow MRI with the uncertainty propagated fluid velocities. RESULTS: Polynomial chaos expansion propagates the fluid velocities with an error of 2% in velocity magnitude relative to computer simulations. Also, the bifurcation region (or impingement location) shows a standard deviation of 0.17 m/s (since an available reported variance in the vessel radius is adopted to model the uncertainty, the expected standard deviation may be different). Numerical phantom experiments indicate that the proposed approach reconstructs the fluid velocities with 0.3% relative error in presence of geometric uncertainties. CONCLUSION: Polynomial chaos expansion is an effective approach to propagate the effect of the uncertainty variable in the blood flow velocities of intracranial aneurysms. Merging 4D-Flow MRI and uncertainty propagated fluid velocities leads to more realistic flow trends relative to ignoring the uncertainty in the vessel radius.


Subject(s)
Intracranial Aneurysm , Blood Flow Velocity , Hemodynamics , Humans , Intracranial Aneurysm/diagnostic imaging , Magnetic Resonance Imaging , Uncertainty
2.
Comput Methods Programs Biomed ; 197: 105729, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33007592

ABSTRACT

BACKGROUND AND OBJECTIVE: Time resolved three-dimensional phase contrast magnetic resonance imaging (4D-Flow MRI) has been used to non-invasively measure blood velocities in the human vascular system. However, issues such as low spatio-temporal resolution, acquisition noise, velocity aliasing, and phase-offset artifacts have hampered its clinical application. In this research, we developed a purely data-driven method for super-resolution and denoising of 4D-Flow MRI. METHODS: The flow velocities, pressure, and the MRI image magnitude are modeled as a patient-specific deep neural net (DNN). For training, 4D-Flow MRI images in the complex Cartesian space are used to impose data-fidelity. Physics of fluid flow is imposed through regularization. Creative loss function terms have been introduced to handle noise and super-resolution. The trained patient-specific DNN can be sampled to generate noise-free high-resolution flow images. The proposed method has been implemented using the TensorFlow DNN library and tested on numerical phantoms and validated in-vitro using high-resolution particle image velocitmetry (PIV) and 4D-Flow MRI experiments on transparent models subjected to pulsatile flow conditions. RESULTS: In case of numerical phantoms, we were able to increase spatial resolution by a factor of 100 and temporal resolution by a factor of 5 compared to the simulated 4D-Flow MRI. There is an order of magnitude reduction of velocity normalized root mean square error (vNRMSE). In case of the in-vitro validation tests with PIV as reference, there is similar improvement in spatio-temporal resolution. Although the vNRMSE is reduced by 50%, the method is unable to negate a systematic bias with respect to the reference PIV that is introduced by the 4D-Flow MRI measurement. CONCLUSIONS: This work has demonstrated the feasibility of using the readily available machinery of deep learning to enhance 4D-Flow MRI using a purely data-driven method. Unlike current state-of-the-art methods, the proposed method is agnostic to geometry and boundary conditions and therefore eliminates the need for tedious tasks such as accurate image segmentation for geometry, image registration, and estimation of boundary flow conditions. Arbitrary regions of interest can be selected for processing. This work will lead to user-friendly analysis tools that will enable quantitative hemodynamic analysis of vascular diseases in a clinical setting.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Artifacts , Blood Flow Velocity , Humans , Phantoms, Imaging , Physics
3.
Int J Numer Method Biomed Eng ; 36(9): e3381, 2020 09.
Article in English | MEDLINE | ID: mdl-32627366

ABSTRACT

4D-Flow magnetic resonance imaging (MRI) has enabled in vivo time-resolved measurement of three-dimensional blood flow velocities in the human vascular system. However, its clinical use has been hampered by two main issues, namely, low spatio-temporal resolution and acquisition noise. While patient-specific computational fluid dynamics (CFD) simulations can address the resolution and noise issues, its fidelity is impacted by accuracy of estimation of boundary conditions, model parameters, vascular geometry, and flow model assumptions. In this paper a scheme to address limitations of both modalities through data-fusion is presented. The solutions of the patient-specific CFD simulation are characterized using proper orthogonal decomposition (POD). Next, a process of projecting the 4D-Flow MRI data onto the POD basis and projection coefficient mapping using generalized dynamic mode decomposition (DMD) enables simultaneous super-resolution and denoising of 4D-Flow MRI. The method has been tested using numerical phantoms derived from patient-specific aneurysmal geometries and applied to in vivo 4D-Flow MRI data.


Subject(s)
Hydrodynamics , Magnetic Resonance Imaging , Blood Flow Velocity , Humans , Imaging, Three-Dimensional , Phantoms, Imaging
4.
Am J Occup Ther ; 73(4): 7304205090p1-7304205090p10, 2019.
Article in English | MEDLINE | ID: mdl-31318673

ABSTRACT

IMPORTANCE: Along with growth in telerehabilitation, a concurrent need has arisen for standardized methods of tele-evaluation. OBJECTIVE: To examine the feasibility of using the Kinect sensor in an objective, computerized clinical assessment of upper limb motor categories. DESIGN: We developed a computerized Mallet classification using the Kinect sensor. Accuracy of computer scoring was assessed on the basis of reference scores determined collaboratively by multiple evaluators from reviewing video recording of movements. In addition, using the reference score, we assessed the accuracy of the typical clinical procedure in which scores were determined immediately on the basis of visual observation. The accuracy of the computer scores was compared with that of the typical clinical procedure. SETTING: Research laboratory. PARTICIPANTS: Seven patients with stroke and 10 healthy adult participants. Healthy participants intentionally achieved predetermined scores. OUTCOMES AND MEASURES: Accuracy of the computer scores in comparison with accuracy of the typical clinical procedure (immediate visual assessment). RESULTS: The computerized assessment placed participants' upper limb movements in motor categories as accurately as did typical clinical procedures. CONCLUSIONS AND RELEVANCE: Computerized clinical assessment using the Kinect sensor promises to facilitate tele-evaluation and complement telehealth applications. WHAT THIS ARTICLE ADDS: Computerized clinical assessment can enable patients to conduct evaluations remotely in their homes without therapists present.


Subject(s)
Stroke Rehabilitation , Stroke , Telerehabilitation , Upper Extremity/physiopathology , Adult , Humans , Movement
5.
Comput Med Imaging Graph ; 70: 165-172, 2018 12.
Article in English | MEDLINE | ID: mdl-30423501

ABSTRACT

4D-Flow MRI has emerged as a powerful tool to non-invasively image blood velocity profiles in the human cardio-vascular system. However, it is plagued by issues such as velocity aliasing, phase offsets, acquisition noise, and low spatial and temporal resolution. In imaging small blood vessel malformations such as intra-cranial aneurysms, the spatial resolution of 4D-Flow is often inadequate to resolve fine flow features. In this paper, we address the problem of low spatial resolution and noise by combining 4D-Flow MRI and patient specific computational fluid dynamics using Least Absolute Shrinkage and Selection Operator. Extensive experiments using numerical phantoms of two actual intra-cranial aneurysms geometries show the applicability of the proposed method in recovering the flow profile. Comparisons with the state-of-the-art denoising methods for 4D-Flow show lower error metrics. This method can enable more accurate computation of flow derived patho-physiological parameters such as wall shear stresses, pressure gradients, and viscous dissipation.


Subject(s)
Hydrodynamics , Imaging, Three-Dimensional/methods , Intracranial Aneurysm/diagnostic imaging , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Signal-To-Noise Ratio , Algorithms , Blood Flow Velocity , Humans
6.
Comput Biol Med ; 99: 142-153, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29929053

ABSTRACT

Flow fields in cerebral aneurysms can be measured in vivo with phase-contrast MRI (4D Flow MRI), providing 3D anatomical magnitude images as well as 3-directional velocities through the cardiac cycle. The low spatial resolution of the 4D Flow MRI data, however, requires the images to be co-registered with higher resolution angiographic data for better segmentation of the blood vessel geometries to adequately quantify relevant flow descriptors such as wall shear stress or flow residence time. Time-of-Flight Magnetic Resonance Angiography (TOF MRA) is a non-invasive technique for visualizing blood vessels without the need to administer contrast agent. Instead TOF uses the blood flow-related enhancement of unsaturated spins entering into an imaging slice as means to generate contrast between the stationary tissue and the moving blood. Because of the higher resolutions, TOF data are often used to assist with the segmentation process needed for the flow analysis and Computational Fluid Dynamics (CFD) modeling. However, presence of slow moving and recirculating blood flow such as in brain aneurysms, especially regions where the blood flow is not perpendicular to the image plane, causes signal loss in these regions. In this work a 3D Curvelet Transform-based image fusion approach is proposed for signal loss artifact reduction of TOF volume data. Experiments show the superiority of the proposed approach in comparison to other multi-resolution 3D Wavelet-based image fusion methodologies. The proposed approach can further facilitate model-based fluid analysis and pre/post-operative treatment of patients with brain aneurysms.


Subject(s)
Cerebral Angiography , Cerebrovascular Circulation , Imaging, Three-Dimensional , Intracranial Aneurysm , Magnetic Resonance Angiography , Artifacts , Humans , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/physiopathology , Sensitivity and Specificity
7.
J Hand Ther ; 29(4): 465-473, 2016.
Article in English | MEDLINE | ID: mdl-27769844

ABSTRACT

STUDY DESIGN: Repeated measures. INTRODUCTION: The Kinect (Microsoft, Redmond, WA) is widely used for telerehabilitation applications including rehabilitation games and assessment. PURPOSE OF THE STUDY: To determine effects of the Kinect location relative to a person on measurement accuracy of upper limb joint angles. METHODS: Kinect error was computed as difference in the upper limb joint range of motion (ROM) during target reaching motion, from the Kinect vs 3D Investigator Motion Capture System (NDI, Waterloo, Ontario, Canada), and compared across 9 Kinect locations. RESULTS: The ROM error was the least when the Kinect was elevated 45° in front of the subject, tilted toward the subject. This error was 54% less than the conventional location in front of a person without elevation and tilting. The ROM error was the largest when the Kinect was located 60° contralateral to the moving arm, at the shoulder height, facing the subject. The ROM error was the least for the shoulder elevation and largest for the wrist angle. DISCUSSION: Accuracy of the Kinect sensor for detecting upper limb joint ROM depends on its location relative to a person. CONCLUSION: This information facilitates implementation of Kinect-based upper limb rehabilitation applications with adequate accuracy. LEVEL OF EVIDENCE: 3b.


Subject(s)
Arthrometry, Articular/instrumentation , Range of Motion, Articular/physiology , Shoulder Joint/physiology , Software , Adult , Biomechanical Phenomena , Cohort Studies , Female , Humans , Male , Ontario , Quality Improvement , Upper Extremity/physiopathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...