Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 16: 801818, 2022.
Article in English | MEDLINE | ID: mdl-35401098

ABSTRACT

To date, decoding limb kinematic information mostly relies on neural signals recorded from the peripheral nerve, dorsal root ganglia (DRG), ventral roots, spinal cord gray matter, and the sensorimotor cortex. In the current study, we demonstrated that the neural signals recorded from the lateral and dorsal columns within the spinal cord have the potential to decode hindlimb kinematics during locomotion. Experiments were conducted using intact cats. The cats were trained to walk on a moving belt in a hindlimb-only condition, while their forelimbs were kept on the front body of the treadmill. The bilateral hindlimb joint angles were decoded using local field potential signals recorded using a microelectrode array implanted in the dorsal and lateral columns of both the left and right sides of the cat spinal cord. The results show that contralateral hindlimb kinematics can be decoded as accurately as ipsilateral kinematics. Interestingly, hindlimb kinematics of both legs can be accurately decoded from the lateral columns within one side of the spinal cord during hindlimb-only locomotion. The results indicated that there was no significant difference between the decoding performances obtained using neural signals recorded from the dorsal and lateral columns. The results of the time-frequency analysis show that event-related synchronization (ERS) and event-related desynchronization (ERD) patterns in all frequency bands could reveal the dynamics of the neural signals during movement. The onset and offset of the movement can be clearly identified by the ERD/ERS patterns. The results of the mutual information (MI) analysis showed that the theta frequency band contained significantly more limb kinematics information than the other frequency bands. Moreover, the theta power increased with a higher locomotion speed.

2.
Sci Rep ; 11(1): 21169, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34707104

ABSTRACT

Deep brain stimulation (DBS) has become an effective therapeutic solution for Parkinson's disease (PD). Adaptive closed-loop DBS can be used to minimize stimulation-induced side effects by automatically determining the stimulation parameters based on the PD dynamics. In this paper, by modeling the interaction between the neurons in populations of the thalamic, the network-level modulation of thalamic is represented in a standard canonical form as a multi-input multi-output (MIMO) nonlinear first-order system with uncertainty and external disturbances. A class of fast and robust MIMO adaptive fuzzy terminal sliding mode control (AFTSMC) has been presented for control of membrane potential of thalamic neuron populations through continuous adaptive DBS current applied to the thalamus. A fuzzy logic system (FLS) is used to estimate the unknown nonlinear dynamics of the model, and the weights of FLS are adjusted online to guarantee the convergence of FLS parameters to optimal values. The simulation results show that the proposed AFTSMC not only significantly produces lower tracking errors in comparison with the classical adaptive fuzzy sliding mode control (AFSMC), but also makes more robust and reliable outputs. The results suggest that the proposed AFTSMC provides a more robust and smooth control input which is highly desirable for hardware design and implementation.


Subject(s)
Computer Simulation , Deep Brain Stimulation , Parkinson Disease/therapy , Fuzzy Logic , Humans , Neurons/physiology , Nonlinear Dynamics , Parkinson Disease/physiopathology , Thalamus/cytology , Thalamus/physiopathology
3.
J Neural Eng ; 18(2)2021 03 01.
Article in English | MEDLINE | ID: mdl-33395669

ABSTRACT

Objective. The main objective of this research is to record both sensory and motor information from the ascending and descending tracts within the spinal cord to decode the hindlimb kinematics during walking on a treadmill.Approach. Two different experimental paradigms (i.e. active and passive) were used in the current study. During active experiments, five cats were trained to walk bipedally while their hands were kept on the front frame of the treadmill for balance or to walk quadrupedally. During passive experiments, the limb was passively moved by the experimenter. Local field potential (LFP) activity was recorded using a microwire array implanted in the dorsal column (DC) and lateral column (LC) of the L3-L4 spinal segments. The amplitude and frequency components of the LFP formed the feature set, and the elastic net regularization was used to decode the hindlimb joint angles.Main results.The results show that there is no significant difference between the information content of the signals recorded from the DC and LC regions during walking on the treadmill, but the information content of the DC is significantly higher than that of the LC during passively applied movement of the hindlimb in the anesthetized cats. Moreover, the decoding performance obtained using the recorded signals from the DC is comparable with that from the LC during locomotion. However, the decoding performance obtained using the recording channels in the DC is significantly better than that obtained using the signals recorded from the LC. The long-term analysis shows that robust decoding performance can be achieved over 2-3 months without a significant decrease in performance.Significance. This work presents a promising approach to developing a natural and robust motor neuroprosthesis device using descending neural signals to execute the movement and ascending neural signals as the feedback information to control the movement.


Subject(s)
Locomotion , Walking , Animals , Biomechanical Phenomena , Hindlimb , Spinal Cord
4.
J Neural Eng ; 16(3): 036023, 2019 06.
Article in English | MEDLINE | ID: mdl-30849772

ABSTRACT

OBJECTIVE: Providing accurate and robust estimates of limb kinematics from recorded neural activities is prominent in closed-loop control of functional electrical stimulation (FES). A major issue in providing accurate decoding the limb kinematics is the decoding model. The primary goal of this study is to develop a decoding approach to model the dynamic interactions of neural systems for accurate decoding. Another critical issue is to find reliable recording sites. Up to now, neural recordings from spinal neural activities were investigated. In this paper, the neural recordings from different vertebrae in decoding limb kinematics are investigated. APPROACH: In the current study, a new generative probabilistic model with explicit considering the joint density is developed. Then, an adaptive discriminative learning algorithm is proposed for learning the model. It will be shown that the proposed generative process can be implemented by a recurrent neural network (RNN) with specific structure. We record the neural activities from dorsal horn neurons by using three electrodes placed in the L4, L5, and L6 vertebrae in anesthetized cats. MAIN RESULTS: Information theoretic analysis on single-joint movement and multi-segment recordings implies the rostrocaudal distribution of kinematic information. It is demonstrated that during hip movement, best decoding performance is achieved by L4 recordings. For knee and ankle movements, best decodings are achieved by L5, and L6 recordings respectively. It is also shown that the decoding accuracy using multi-segment recordings outperforms decoding accuracy obtained by single-segment recording in multi-joint movement. The results also confirm the superiority of the proposed probabilistic recurrent neural network (PRNN) over the conventional recurrent neural network and Kalman filter ([Formula: see text]). SIGNIFICANCE: Multi-segment recordings from dorsal horn neurons as well as the proposed probabilistic recurrent network model provide a promising approach for robust and accurate decoding limb kinematics.


Subject(s)
Hindlimb/physiology , Models, Statistical , Neural Networks, Computer , Posterior Horn Cells/physiology , Animals , Biomechanical Phenomena/physiology , Cats , Hindlimb/innervation
5.
Sci Rep ; 8(1): 577, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29330489

ABSTRACT

Decoding continuous hind limb joint angles from sensory recordings of neural system provides a feedback for closed-loop control of hind limb movement using functional electrical stimulation. So far, many attempts have been done to extract sensory information from dorsal root ganglia and sensory nerves. In this work, we examine decoding joint angles trajectories from the single-electrode extracellular recording of dorsal horn gray matter of the spinal cord during passive limb movement in anesthetized cats. In this study, a processing framework based on ensemble learning approach is propose to combine firing rate (FR) and interspike interval (ISI) information of the neuronal activity. For this purpose, a stacked generalization approach based on recurrent neural network is proposed to enhance decoding accuracy of the movement kinematics. The results show that the high precision neural decoding of limb movement can be achieved even with a single electrode implanted in the spinal cord gray matter.


Subject(s)
Gray Matter/physiology , Hindlimb/physiology , Posterior Horn Cells/physiology , Algorithms , Animals , Biomechanical Phenomena , Cats , Electric Stimulation , Movement , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...