Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 655: 124024, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38537920

ABSTRACT

Controlling the drug release and restricting its presence in healthy organs is extremely valuable. In this study, mesoporous silica nanoparticles (MSN) as the core, loaded with paclitaxel (PTX), were coated with a non-porous silica shell functionalized with disulfide bonds. The nanoparticles were further coated with polyethylene glycol (PEG) via disulfide linkages. We analyzed the physicochemical properties of nanoparticles, including hydrodynamic size via Dynamic Light Scattering (DLS), zeta potential, X-ray Diffraction (XRD) patterns, Fourier-Transform Infrared (FTIR) spectra, and imaging through Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The drug release profile in two distinct glutathione (GSH) concentrations of 2 µM and 10 µM was measured. The cellular uptake of nanoparticles by MCF-7 cell line was determined using Confocal Laser Scanning Microscopy (CLSM) images and flow cytometry. Furthermore, the cell viability and the capability of nanoparticles to induce apoptosis in MCF-7 cell line were studied using the MTT assay and flow cytometry, respectively. Our investigations revealed that the release of PTX from the drug delivery system was redox-responsive. Also, results indicated an elevated level of cellular uptake and efficient induction of apoptosis, underscoring the promising potential of this redox-responsive drug delivery system for breast cancer therapy.


Subject(s)
Breast Neoplasms , Nanoparticles , Humans , Female , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Breast Neoplasms/drug therapy , Silicon Dioxide/chemistry , Drug Delivery Systems , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Glutathione/chemistry , Oxidation-Reduction , Disulfides , Drug Carriers/chemistry , Porosity
2.
Biomater Adv ; 158: 213771, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38271801

ABSTRACT

The efficacy of injectable micellar carriers is hindered due to the disassembly of micelles into free surfactants in the body, resulting in their dilution below the critical micelle concentration (CMC). Copolymer micelles were developed to address this issue, containing a superhydrophilic zwitterionic block and a superhydrophobic block with a disulfide bond, which exhibited a CMC lower than conventional micellar carriers. Cleavable copolymers composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) zwitterion and polycaprolactone CHLZW as the shell, with gold nanoparticles as their core, were studied to deliver doxorubicin to tumor cells while reducing the side effect of the free cytotoxic agent. The research focused on the impact of gold nanoparticles present in targeted TMT-micelles core on stability and in vivo bioavailability and sonotoxicity of the nanoparticles, as well as their synergistic effect on targeted chemotherapy. The nanomicelles prepared in this study demonstrated excellent biocompatibility and responsiveness to stimuli. PCL-SS-MPC nanomicelles displayed drug release in response to GSH and pH, resulting in high DOX release at GSH 10 mM and pH 5. Our findings, supported by MTT, flow cytometry, and confocal laser scanning microscopy, demonstrated that AuS-PM-TMTM-DOX micelles effectively induced apoptosis and enhanced cellular uptake in MCF7 and MDA-MB231 cell lines. The cytotoxic effects of AuS-PM-DOX/US on cancer cells were approximately 38 % higher compared to AuS-PM-DOX samples at a concentration of IC50 0.68 nM. This increase in cellular toxicity was primarily attributed to the promotion of apoptosis. The introduction of disulfide linkages in AuSNPs resulted in increased ROS production when exposed to ultrasound stimulation, due to a reduction in GSH levels. Compared to other commercially available nanosensitizers such as titanium dioxide, exposure of AuS-PM to ultrasound radiation (1.0 W/cm, 2 min) significantly enhanced cavitation effects and resulted in 3 to 5 times higher ROS production. Furthermore, laboratory experiments using human breast cancer cells (MDA-MB-231, MCF7) demonstrated that the toxicity of AuS-PM in response to ultrasound waves is dose-dependent. The findings of this study suggest that this formulated nanocarrier holds great potential as a viable treatment option for breast cancer. It can induce apoptosis in cancer cells, reduce tumor size, and display notable therapeutic efficacy.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Metal Nanoparticles , Humans , Female , Micelles , Breast Neoplasms/drug therapy , Gold , Reactive Oxygen Species , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Antineoplastic Agents/pharmacology , Polymers , Oxidation-Reduction , Hydrogen-Ion Concentration , Disulfides
3.
Int J Pharm ; 653: 123840, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38262585

ABSTRACT

Inflammation of the posterior segment of the eye is a severe condition and hard to cure as delivery of drugs to the inflammation site is inefficient. Currently, the primary treatment approach is ocular surgery or invasive ocular injections. Herein, we designed and developed a topically self nano-emulsifying drug delivery system (SNEDDs) to deliver triamcinolone acetonide (TCA) to the posterior segment of the eye. A screening based on TCA solubility was conducted on each excipient followed by preparation of various formulations using different ratios of the selected excipients. Vesicles of optimized SNEDDs had less than 100 nm size and spherical morphology. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay showed self-emulsified vesicles have relatively high safety on retinal pigment epithelium (RPE) cell line. Furthermore, efficient cellular uptake of coumarin 6-loaded SNEDDs in RPE using confocal laser scanning microscopy (CLSM) was confirmed. In addition, an in-vivo study using hematoxylin and eosin (H&E) staining revealed that 14 days of topical treatment of albino rabbit eyes with TCA-loaded SNEDDs was safe and no sign of tissue destruction and inflammation was detected in different parts of the eye sections including cornea, sclera, retina, and optic nerve. Also, the CLSM images from topically treated eyes with coumarin 6 (a hydrophobic, fluorescent drug model) loaded SNEDDs, showed that the optimized SNEDDs could properly penetrate toward the posterior segments of the eye especially the retina, posterior parts of the choroid, and sclera. Considering the outstanding results obtained by ocular tissue penetration and low toxicity, prepared SNEDDs, have the potential to be used as a topical administration for treating posterior segment disorders of the eye through an utterly non-invasive route and TCA-loaded SNEDDs could be an alternative for TCA intravitreal and intra conjunctival injections.


Subject(s)
Coumarins , Drug Delivery Systems , Ophthalmology , Thiazoles , Animals , Rabbits , Drug Delivery Systems/methods , Nanoparticle Drug Delivery System , Triamcinolone Acetonide , Pharmaceutical Preparations , Solubility , Excipients , Inflammation , Emulsions/chemistry
4.
J Chemother ; : 1-31, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38179685

ABSTRACT

Dose-limiting toxicities (DLTs) are severe adverse effects that define the maximum tolerated dose of a cancer drug. In addition to the specific mechanisms of each drug, common contributing factors include inflammation, apoptosis, ion imbalances, and tissue-specific enzyme deficiencies. Among various DLTs are bleomycin-induced pulmonary fibrosis, doxorubicin-induced cardiomyopathy, cisplatin-induced nephrotoxicity, methotrexate-induced hepatotoxicity, vincristine-induced neurotoxicity, paclitaxel-induced peripheral neuropathy, and irinotecan, which elicits severe diarrhea. Currently, specific treatments beyond dose reduction are lacking for most toxicities. Further research on cellular and molecular pathways is imperative to improve their management. This review synthesizes preclinical and clinical data on the pharmacological mechanisms underlying DLTs and explores possible treatment approaches. A comprehensive perspective reveals knowledge gaps and emphasizes the need for future studies to develop more targeted strategies for mitigating these dose-dependent adverse effects. This could allow the safer administration of fully efficacious doses to maximize patient survival.


The dose-limiting toxicity of most anticancer drugs occurs via the activation of inflammatory/apoptosis/ROS pathways.Regarding the dose-limiting toxicity of most anticancer drugs, there is no specific treatment other than discontinuation or dose reduction.Accurately identifying the molecular pathways involved in the dose-limiting toxicity of anticancer drugs can help to identify new treatments.

SELECTION OF CITATIONS
SEARCH DETAIL
...