Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 59(23): 17028-17037, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33232608

ABSTRACT

To improve our understanding of the chemistry of actinide complexes and to spur their development in the field of actinide markers, two new uranium complexes were synthesized using 8-hydroxyquinoline and 5,7-dichloro-8-hydroxyquinoline. The prepared complexes were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, ultraviolet-visible spectroscopy, elemental analysis, and single-crystal X-ray diffraction. The impact of the electron-withdrawing group of the ligand on the photoluminescence spectra of the complexes in solution and in the solid state was scrutinized. The bandgap of the complexes was calculated using the density functional theory (DFT) method to investigate the effects of the electron-withdrawing groups on energy levels. The synthesized uranium complexes demonstrated appropriate levels of the lowest unoccupied molecular orbital energy, leading to favorable dye stability. The prepared uranium complexes showed blue fluorescent emission, and the sample with the most intense fluorescence was used to construct bluish-green organic light-emitting diodes using simple solution processing fabrication methods. Absorbance spectra, emission spectra, DFT-calculated energy levels, and comparisons of the fabricated organic light-emitting diodes indicated that the electron-withdrawing group was a key factor in photoluminescence behavior.

2.
Sci Rep ; 7: 42787, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28218246

ABSTRACT

We investigate dynamic formation of nanosheet charge accumulations by heterointerface engineering in double injection layer (DIL) based organic light emitting diodes (OLEDs). Our experimental results show that the device performance is considerably improved for the DIL device as the result of heterointerface injection layer (HIIL) formation, in comparison to reference devices, namely, the current density is doubled and even quadrupled and the turn-on voltage is favorably halved, to 3.7 V, which is promising for simple small-molecule OLEDs. The simulation reveals the (i) formation of dynamic p-type doping (DPD) region which treats the quasi Fermi level at the organic/electrode interface, and (ii) formation of dynamic dipole layer (DDL) and the associated electric field at the organic/organic interface which accelerates the ejection of the carriers and their transference to the successive layer. HIIL formation proposes alternate scenarios for device design. For instance, no prerequisite for plasma treatment of transparent anode electrode, our freedom in varying the thicknesses of the organic layers between 10 nm and 60 nm for the first layer and between 6 nm and 24 nm for the second layer. The implications of the present work give insight into the dynamic phenomena in OLEDs and facilitates the development of their inexpensive fabrication for lighting applications.


Subject(s)
Lighting/instrumentation , Organic Chemicals/chemistry , Equipment Design , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Semiconductors
SELECTION OF CITATIONS
SEARCH DETAIL
...