Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Epidemiol Infect ; 150: e154, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35923078

ABSTRACT

In March 2018, the US Food and Drug Administration (FDA), US Centers for Disease Control and Prevention, California Department of Public Health, Los Angeles County Department of Public Health and Pennsylvania Department of Health initiated an investigation of an outbreak of Burkholderia cepacia complex (Bcc) infections. Sixty infections were identified in California, New Jersey, Pennsylvania, Maine, Nevada and Ohio. The infections were linked to a no-rinse cleansing foam product (NRCFP), produced by Manufacturer A, used for skin care of patients in healthcare settings. FDA inspected Manufacturer A's production facility (manufacturing site of over-the-counter drugs and cosmetics), reviewed production records and collected product and environmental samples for analysis. FDA's inspection found poor manufacturing practices. Analysis by pulsed-field gel electrophoresis confirmed a match between NRCFP samples and clinical isolates. Manufacturer A conducted extensive recalls, FDA issued a warning letter citing the manufacturer's inadequate manufacturing practices, and federal, state and local partners issued public communications to advise patients, pharmacies, other healthcare providers and healthcare facilities to stop using the recalled NRCFP. This investigation highlighted the importance of following appropriate manufacturing practices to minimize microbial contamination of cosmetic products, especially if intended for use in healthcare settings.


Subject(s)
Burkholderia Infections , Burkholderia cepacia complex , Cross Infection , Aerosols , Burkholderia Infections/epidemiology , Cross Infection/epidemiology , Disease Outbreaks , Electrophoresis, Gel, Pulsed-Field , Humans , United States/epidemiology
2.
Emerg Infect Dis ; 26(10): 2319-2328, 2020 10.
Article in English | MEDLINE | ID: mdl-32946367

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) cause substantial and costly illnesses. Leafy greens are the second most common source of foodborne STEC O157 outbreaks. We examined STEC outbreaks linked to leafy greens during 2009-2018 in the United States and Canada. We identified 40 outbreaks, 1,212 illnesses, 77 cases of hemolytic uremic syndrome, and 8 deaths. More outbreaks were linked to romaine lettuce (54%) than to any other type of leafy green. More outbreaks occurred in the fall (45%) and spring (28%) than in other seasons. Barriers in epidemiologic and traceback investigations complicated identification of the ultimate outbreak source. Research on the seasonality of leafy green outbreaks and vulnerability to STEC contamination and bacterial survival dynamics by leafy green type are warranted. Improvements in traceability of leafy greens are also needed. Federal and state health partners, researchers, the leafy green industry, and retailers can work together on interventions to reduce STEC contamination.


Subject(s)
Escherichia coli Infections , Shiga-Toxigenic Escherichia coli , Canada/epidemiology , Disease Outbreaks , Escherichia coli Infections/epidemiology , Food Microbiology , Lactuca , United States/epidemiology
3.
Emerg Infect Dis ; 25(8): 1461-1468, 2019 08.
Article in English | MEDLINE | ID: mdl-31310227

ABSTRACT

We investigated an outbreak of listeriosis detected by whole-genome multilocus sequence typing and associated with packaged leafy green salads. Nineteen cases were identified in the United States during July 5, 2015-January 31, 2016; isolates from case-patients were closely related (median difference 3 alleles, range 0-16 alleles). Of 16 case-patients interviewed, all reported salad consumption. Of 9 case-patients who recalled brand information, all reported brands processed at a common US facility. The Public Health Agency of Canada simultaneously investigated 14 cases of listeriosis associated with this outbreak. Isolates from the processing facility, packaged leafy green salads, and 9 case-patients from Canada were closely related to US clinical isolates (median difference 3 alleles, range 0-16 alleles). This investigation led to a recall of packaged leafy green salads made at the processing facility. Additional research is needed to identify best practices and effective policies to reduce the likelihood of Listeria monocytogenes contamination of fresh produce.


Subject(s)
Disease Outbreaks , Food Microbiology , Foodborne Diseases/epidemiology , Foodborne Diseases/microbiology , Listeria , Listeriosis/epidemiology , Listeriosis/microbiology , Salads/microbiology , Adolescent , Adult , Aged , Aged, 80 and over , Canada/epidemiology , Child , Child, Preschool , Disease Notification , Female , Genome, Bacterial , Geography, Medical , Humans , Listeria/classification , Listeria/genetics , Listeria/isolation & purification , Listeriosis/transmission , Male , Middle Aged , Multilocus Sequence Typing , Pregnancy , Public Health Surveillance , Seasons , United States/epidemiology , Young Adult
4.
FEMS Microbiol Lett ; 364(14)2017 08 01.
Article in English | MEDLINE | ID: mdl-28854673

ABSTRACT

The genome sequence of the obligate chemolithoautotroph Hydrogenovibrio crunogenus paradoxically predicts a complete oxidative citric acid cycle (CAC). This prediction was tested by multiple approaches including whole cell carbon assimilation to verify obligate autotrophy, phylogenetic analysis of CAC enzyme sequences and enzyme assays. Hydrogenovibrio crunogenus did not assimilate any of the organic compounds provided (acetate, succinate, glucose, yeast extract, tryptone). Enzyme activities confirmed that its CAC is mostly uncoupled from the NADH pool. 2-Oxoglutarate:ferredoxin oxidoreductase activity is absent, though pyruvate:ferredoxin oxidoreductase is present, indicating that sequence-based predictions of substrate for this oxidoreductase were incorrect, and that H. crunogenus may have an incomplete CAC. Though the H. crunogenus CAC genes encode uncommon enzymes, the taxonomic distribution of their top matches suggests that they were not horizontally acquired. Comparison of H. crunogenus CAC genes to those present in other 'Proteobacteria' reveals that H. crunogenus and other obligate autotrophs lack the functional redundancy for the steps of the CAC typical for facultative autotrophs and heterotrophs, providing another possible mechanism for obligate autotrophy.


Subject(s)
Carbon/metabolism , Citric Acid Cycle , Hydrothermal Vents/microbiology , Piscirickettsiaceae/metabolism , Chemoautotrophic Growth , Glucose/metabolism , Oxidation-Reduction , Phylogeny , Piscirickettsiaceae/classification , Piscirickettsiaceae/genetics , Pyruvic Acid/metabolism
5.
MMWR Morb Mortal Wkly Rep ; 64(6): 144-7, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25695319

ABSTRACT

In August 2014, PulseNet, the national molecular subtyping network for foodborne disease surveillance, detected a multistate cluster of Salmonella enterica serotype Newport infections with an indistinguishable pulse-field gel electrophoresis (PFGE) pattern (XbaI PFGE pattern JJPX01.0061). Outbreaks of illnesses associated with this PFGE pattern have previously been linked to consumption of tomatoes harvested from Virginia's Eastern Shore in the Delmarva region and have not been linked to cucumbers or other produce items. To identify the contaminated food and find the source of the contamination, CDC, state and local health and agriculture departments and laboratories, and the Food and Drug Administration (FDA) conducted epidemiologic, traceback, and laboratory investigations. A total of 275 patients in 29 states and the District of Columbia were identified, with illness onsets occurring during May 20-September 30, 2014. Whole genome sequencing (WGS), a highly discriminating subtyping method, was used to further characterize PFGE pattern JJPX01.0061 isolates. Epidemiologic, microbiologic, and product traceback evidence suggests that cucumbers were a source of Salmonella Newport infections in this outbreak. The epidemiologic link to a novel outbreak vehicle suggests an environmental reservoir for Salmonella in the Delmarva region that should be identified and mitigated to prevent future outbreaks.


Subject(s)
Cucumis sativus/microbiology , Disease Outbreaks/statistics & numerical data , Salmonella Food Poisoning/epidemiology , Adult , Aged , Aged, 80 and over , Female , Food Microbiology , Humans , Male , Middle Aged , Salmonella/isolation & purification , United States/epidemiology
6.
Virulence ; 2(6): 573-9, 2011.
Article in English | MEDLINE | ID: mdl-21971184

ABSTRACT

There has been a continuous rise in the number of produce-based foodborne outbreaks in the recent decades despite the perception that foodborne diseases were primarily linked to animal-based products. The Centers for Disease Control and Prevention (CDC) estimates that 95% of Salmonella-based infections originate from foodborne sources, with multiple produce-based salmonellosis outbreaks occurring since 1990. The contamination of produce in both the pre-harvest and post-harvest produce environments is challenging to eliminate since produce is consumed as a raw, fresh commodity. Salmonella spp. contamination is possible through contact with the produce in the field as well as in the processing facility. The field contamination of produce infers the ability of Salmonella spp. to survive on the plant surface. The fitness of Salmonella spp. in the plant habitat is limited as opposed to naturally plant-associated bacteria, but survival is possible. The use of intensive farming practices, globalization of food products, high demand for convenience food products, and increased foodborne disease surveillance also have unknown ramifications in the ascending trends of produce-based outbreaks. A better understanding of the ecology of Salmonella spp. in the plant environment as well as the processing, food handling, and surveillance factors affecting the incidence of foodborne outbreaks will provide a comprehensive view of the etiology and epidemiology of produce-associated foodborne outbreaks. An understanding of the outbreaks and the factors facilitating produce contamination will allow for the development of intervention procedures and strategies to reduce the risk of produce contamination by Salmonella spp.


Subject(s)
Food Safety , Fruit/microbiology , Salmonella Food Poisoning/microbiology , Salmonella/physiology , Vegetables/microbiology , Food Contamination , Humans , Microbial Viability
SELECTION OF CITATIONS
SEARCH DETAIL
...