Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(5): e0302859, 2024.
Article in English | MEDLINE | ID: mdl-38787870

ABSTRACT

The objective of the current study was to assess the impact of dietary phytase supplementation on Labeo rohita fingerlings and to examine the effects on growth, nutrient digestibility and chemical characteristics of diets containing rice protein concentrate (RPC) as a major protein source. Six experimental diets were made, i.e., a positive control (fishmeal-based diet with no phytase), FM0; a negative control (RPC-based diet with no phytase), RPC0; and four supplemental phytase levels (250, 500, 1000, and 2000 FTU/kg). Fingerlings with an average weight of 9.42 ± 0.02 grams (mean ± SD) were randomly distributed into six experimental groups of three replicates, each containing 25 fish per tank (75 liters of water), provided with experimental diets at a rate equivalent to 5% of their body weight for 90 days, and uneaten feed was collected after 2 hours to determine feed consumption. The feces were collected before feeding to estimate digestibility. Phytase in combination with the RPC-based diet significantly (p < 0.05) enhanced phytate phosphorus in vitro hydrolysis; growth performance; nutrient (crude protein, crude fat, moisture and gross energy) and mineral (P, Ca, Mg, Na, K, Zn, Mn and Cu) digestibility; digestive enzyme (protease, lipase and amylase) activity; and mineral deposition up to 1000 FTU/kg phytase. However, the hepatosomatic and viscerosomatic indices and carcass composition were not influenced (p > 0.05) by phytase supplementation. Increasing phytase supplementation in the RPC-based diets led to a significant (p < 0.05) decrease in the serum biochemical parameters (alkaline phosphatase activity, aspartate aminotransferase, alanine aminotransferase), which resulted in improved liver health. In conclusion, phytase-supplemented RPC-based diets improved the growth, mineral/nutrient digestibility, digestive enzymes, serum biochemistry, and mineral deposition of L. rohita fingerlings up to 1000 FTU/kg. Broken line regression analysis revealed that the optimum phytase concentration in the RPC-based diet for L. rohita was 874.19 FTU/kg.


Subject(s)
6-Phytase , Animal Feed , Cyprinidae , Dietary Supplements , Oryza , 6-Phytase/metabolism , Animals , Animal Feed/analysis , Cyprinidae/growth & development , Cyprinidae/metabolism , Cyprinidae/physiology , Digestion/drug effects , Animal Nutritional Physiological Phenomena , Plant Proteins/metabolism , Diet/veterinary , Nutrients/metabolism
2.
PLoS One ; 19(3): e0299195, 2024.
Article in English | MEDLINE | ID: mdl-38483972

ABSTRACT

A 90-day study was conducted to investigate the effects of substituting sunflower oil (SFO) for fish oil (FO) on various parameters in Labeo rohita (initial weight 18.21 ± 0.22 g). Five experimental diets with different levels of SFO (up to 7%) substitution for FO (0%, 25%, 50%, 75%, and 100%) were formulated, ensuring equal levels of nitrogen and lipids. The results indicated that even with 100% substitution of SFO with FO, there were no significant differences (P>0.05) were observed in growth performance. The survival rate (SR), hepato-somatic index (HSI), and viscero-somatic index (VSI) as well as whole-body composition were also nonsignificant by SFO substitution. However, the fatty acid profiles in both muscle and liver were influenced (P<0.05) by dietary substitution. Saturated fats (SFA) decreased, while monounsaturated fats (MUFA), and linoleic acid (LA) increased (P<0.05). On the other hand, the contribution of linolenic acid (ALA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) decreased (P<0.05) as the amount of SFO in the diet increased. Hematology parameters, including red blood cells (RBCs), hemoglobin (Hb), and hematocrit (Hct), were not affected. Globulin (GLO) levels decreased significantly (P<0.05), while alanine transaminase (ALT) and aspartate transaminase (AST) activity showed nonsignificant increases (P>0.05). Total protein (TP) increased (P<0.05) at 100% SFO inclusion in the diet, and albumin (ALB) levels increased (P<0.05) at 75% and 100% SFO inclusion in the diet. Cholesterol (CHOL), triacylglycerol (TG), and high-density lipids (HDL) were not significantly affected (P>0.05), while low-density lipids (LDL) were significantly increased (P<0.05) compared to the control group. Cortisol (CORT) and glucose (GLU) levels showed nonsignificant (P>0.05) changes. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activities in the liver and serum were not significantly (P>0.05) affected, while malondialdehyde (MDA) status was significantly (P<0.05) reduced. In conclusion, the fatty acid profile of the muscle and liver of fish was modified by the diets, and FO can be substituted with SFO up to 100% for L. rohita, which is beneficial for growth and immunity while marinating the lipid contents in fish. Our study revealed that fully replacing fish oil with SFO shows promise in fully replacing FO without compromising the growth and overall health status of the fish.


Subject(s)
Fatty Acids , Fish Oils , Fish Oils/pharmacology , Fatty Acids/metabolism , Antioxidants/metabolism , Sunflower Oil , Feasibility Studies , Plant Oils/pharmacology , Diet , Liver/metabolism , Body Composition , Biomarkers/metabolism
3.
PLoS One ; 19(3): e0298414, 2024.
Article in English | MEDLINE | ID: mdl-38483918

ABSTRACT

ß-glucan is a well-documented feed additive for its potent immunostimulatory properties in many farmed fish species. This study examined how it can also be a promising growth promoter, modulate antioxidant enzyme activities, and act as an anti-stress agent in striped catfish (Pangasianodon hypophthalmus). A 12-week feeding experiment was untaken to determine the effects of dietary ß-glucan supplementation at graded levels (0, 0.5, 1.0, and 1.5 g kg-1). Measured indicators suggest that a dietary inclusion level of 1.5 g kg-1 ß-glucan gave the highest positive responses: weight gain (120.10 g fish-1), survival (98.30%), and lower FCR (1.70) (P<0.05). Whole body proximate analysis had only revealed that crude protein was significantly affected by the dietary inclusion of ß-glucan (P<0.05), with the highest protein content (19.70%) being in fish that were fed with 1.5 g kg-1 ß-glucan. Although other inclusion levels (i.e., 0.5 and 1 g kg-1) of ß-glucan did not enhance body protein content (P>0.05). The assessment of fatty acid composition in muscle, liver, and adipose tissues showed modifications with the inclusion of ß-glucan. Antioxidative-related enzyme activities (inc. catalase, glutathione peroxidase, and superoxide dismutase) that were measured in the liver had higher levels when fed with ß-glucan inclusion diets (P<0.05). Following the feed trial, fish were subjected to crowding stress treatment. It was subsequently found that catfish fed with ß-glucan-based diet groups had lower levels of blood stress-related indicators compared to the control group with no dietary ß-glucan. The use of 1.5 g kg-1 of dietary ß-glucan resulted in the lowest measured levels of cortisol (43.13 ng mL-1) and glucose (50.16 mg dL-1). This study has demonstrated that the dietary inclusion of ß-glucan can have functional benefits beyond the immunological enhancements in striped catfish. Furthermore, its use can increase production levels and mitigate the stress associated with intensive farming practices.


Subject(s)
Catfishes , beta-Glucans , Animals , Animal Feed/analysis , Antioxidants/pharmacology , beta-Glucans/pharmacology , Diet/veterinary , Dietary Supplements/analysis
4.
Article in English | MEDLINE | ID: mdl-38500315

ABSTRACT

The primary aim of this study was to examine the impact of xylooligosaccharide (XOS) in rice protein concentrate (RPC) based diets on the growth performance, body composition, digestive enzymes, intestinal morphology and blood biochemistry of Labeo rohita fingerlings. Four different XOS levels (0%, 0.5%, 1% and 2%) were used at each RPC (75% and 100%) level. Twenty-five fish per tank with an average initial weight of 25 ± 0.05 g were randomly assigned (Randomised complete block design) to each of the 8 groups in triplicate aquaria (36 × 16 × 12″) and then fed with respective diets @ 3% body weight for 90 days. The results showed significant improvements in growth performance, such as increased weight gain %, specific growth rate, and protein efficiency ratio and improved feed conversion ratio in 1% XOS supplemented diet at 75% RPC. A significant decrease in serum alkaline phosphatase activity (ALP) and plasma melanodialdehyde (MDA) were observed at 1% XOS level in 75% RPC based diets, respectively. Meanwhile, the lowest total cholesterol and highest lysozyme activity were observed in 1% XOS supplemented diet at 75% RPC levels. Moreover, the serum (alanine aminotransferase and aspartate transaminase) and plasma (superoxide dismutase, triglyceride, high density and low density lipoprotein) activities showed nonsignificant effects among the treatments. Furthermore, the digestive enzymes (protease & lipase) and intestinal morphology were significantly influenced at 1% XOS in the 75% RPC-based diet. Polynomial regression analysis showed that 1.25% XOS is the optimum requirement for the growth of rohu fingerlings when fed at 75% RPC based diets. Overall, it was concluded that the 75% RPC diet was efficiently replaced by fishmeal along with 1% XOS addition in L. rohita fingerlings without any negative effect on growth performance and intestinal health.

5.
J Anim Physiol Anim Nutr (Berl) ; 108(1): 27-35, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37480189

ABSTRACT

The aim of this study was to determine the optimal dietary phosphorus (P) requirement and its effects on growth performance, body composition, mineralization and alkaline phosphate (ALP) activity in silver carp (Hypophthalmichthys molitrix). A total of 360 fish with an average initial weight of 7.0 ± 0.15 g were divided into 18 tanks (70 L capacity each) with a stocking density of 20 fish per tank in triplicate. The fish were fed diets containing six levels of P (3.3, 4.4, 5.5, 6.5, 7.5 and 8.6 g/kg) up to satiation for 90 days twice daily at 09:00 and 16:00. The results showed that fish fed diets containing 6.5 and 7.5 g/kg dietary P had significantly higher (p < 0.05) growth performance in terms of final weight gain, average weight gain (AWG), weight gain% (WG%), protein efficiency ratio (PER) and specific growth rate (SGR) than fish fed other diets. The best value of the feed conversion ratio (FCR) was observed in fish fed the 6.5 g/kg P diet, which was not significantly different from the 7.5 g/kg P diet. Increasing P supplementation above 6.5 g/kg significantly reduced (p < 0.05) the feed intake of silver carp. Whole-body composition analysis indicated that increasing P levels resulted in a decrease (p < 0.05) in crude fat (CF) and an increase (p < 0.05) in crude ash (CA) content, while crude protein (CP) and moisture content remained unaffected (p > 0.05). Fish fed diets containing ≥6.5 g/kg P had significantly higher (p < 0.05) Ca content in the whole body, bones and scales compared to those fed diets containing ≤5.5 g/kg P. A similar trend was observed for P and Mg contents in the whole body, bones and scales. The Zn content tended to decrease (p < 0.05) with increasing P supplementation in the whole body and bones, but fish fed diets containing ≥6.5 g/kg P had significantly higher (p < 0.05) Zn content compared to fish fed diets containing ≤5.5 g/kg P. The Ca/P ratio was significantly affected by P supplementation. Fish fed diets containing ≥6.5 g/kg P had significantly higher (p < 0.05) Ca and P contents in the serum than fish fed other diets. ALP activity increased (p < 0.05) with increasing P levels up to 6.5 g/kg P and decreased (p < 0.05) thereafter. In conclusion, supplementing P up to 6.35 g/kg is recommended for the optimal growth of silver carp.


Subject(s)
Carps , Phosphorus, Dietary , Animals , Phosphorus , Phosphates , Weight Gain
6.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 403-413, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37964722

ABSTRACT

The current study was performed to investigate the impact of different temperatures and protein levels on the growth performance, proximate composition and digestive and hepatic enzyme activities of Labeo rohita fingerlings. For this purpose, healthy fingerlings (average initial weight of 6.40 ± 0.02 g) were acclimatized for 15 days, then reared at three temperatures (25°C, 30°C and 35°C) and fed three levels of crude protein (25%, 30% and 35% crude protein (CP)) twice daily until satiation for 60 days. The results of the study revealed that the highest growth performance was observed in fish fed 35% protein and reared at 30°C. Similarly, fish reared at 35°C and 25°C water temperature showed comparatively better growth performance in fish fed with 35% protein. Furthermore, a significant enhancement in feed intake was observed with increasing culture temperature and increasing CP levels, but at 25°C, increasing CP levels significantly decreased the feed intake. Sligh variations were also observed in proximate composition in terms of moisture, CP, crude fat (CF) and ash contents in fish fed with different CP levels and reared at different temperatures. The hepatosomatic index and viscerosomatic index decreased significantly with increasing levels of protein and temperature. Amylase activities were significantly reduced with increasing culture temperature at each protein level. Increasing culture temperature did not affected the lipase activities. However, lipase activities were enhanced with increasing CP levels at 25°C and activities decreased with increasing CP levels at 30-35°C. Protease activity was enhanced with increasing temperature and CP levels. Significant increases were also observed in serum total proteins and liver functioning enzymes such as alkaline phosphatase, alanine aminotransferase and aspartate aminotransferase in response to increased temperature, and protein had a reciprocal effect. It is concluded that increasing the CP levels increased the growth performance independent of temperature. However, similar growth performance at 30 CP (30°C) and 35 CP (35°C) indicates that L. rohita requires more protein at higher temperature for optimum growth.


Subject(s)
Cyprinidae , Animals , Temperature , Cyprinidae/metabolism , Alkaline Phosphatase/metabolism , Lipase/metabolism
7.
J Anim Physiol Anim Nutr (Berl) ; 108(1): 274-284, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37803872

ABSTRACT

Natural herbs are excellent alternatives to synthetic compounds to enhance the growth performance and health status of fish. This study was conducted to evaluate the efficacy of black cardamom (Amomum subulatum) extract (BCE) as an herbal supplement in improving the growth, antioxidant status, haematology, and serum biochemistry of Catla catla. The acclimatized fish (N = 900; average initial weight = 14.44 ± 0.33 g) were allocated into five groups (60 fish/group in triplicate) in hapas (4 × 2 × 2.5 ft) and provided with feed containing 0 (control), 0.5, 1, 2 and 4 g/kg BCE for 90 days before being subjected to 8 days of crowding stress. After 90 days, significantly higher feed utilization and growth were observed in all BCE-fed treatments compared to the control; however, the maximum values of these parameters were noted in the 2 g/kg BCE-fed treatment. Moreover, the BCE-fed groups exhibited a significant increase in antioxidant indices (glutathione peroxidase, superoxide dismutase and catalase), with a significant reduction in malondialdehyde levels, indicating a higher antioxidant capacity compared to the control. Significant improvements in haematological parameters, such as an increase in haematocrit, haemoglobin and red blood cells and a decrease in white blood cells, were observed in BCE-fed treatments compared to the control. Furthermore, BCE-fed groups showed a significant decrease in serum glucose, cortisol and triglycerides, while total protein, globulin and albumin levels were significantly higher compared with the control. During the feeding trial of 90 days, no mortality was observed; however, the lowest cumulative mortality was noted in the 2 g/kg BCE group after crowding stress of 8 days. In conclusion, the use of BCE in feed can enhance the growth performance, antioxidant status, haematology, and serum biochemistry of C. catla and improve the resistance against crowding stress. The optimum levels of BCE for C. catla were estimated based on weight gain % (1.78 g/kg; R2 = 0.97), feed conversion ratio (1.65 g/kg; R2 = 0.98), MDA content (1.66 g/kg; R2 = 0.93) and serum lysozyme activity (1.72 g/kg; R2 = 1) using broken-line regression analysis.


Subject(s)
Amomum , Cyprinidae , Elettaria , Animals , Antioxidants , Dietary Supplements/analysis , Animal Feed/analysis , Diet
8.
Biol Trace Elem Res ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066311

ABSTRACT

Zinc (Zn) is an important dietary nutrient for the optimum growth performance, feed efficiency, normal metabolism, and fish health. Unfortunately, Zn requirement for mori (Cirrhinus mrigala) is not available. This experiment was designed to assess the impacts of Zn-gluconate levels on growth performance, feed utilization, mineral composition, and enzyme activities of mori and determines the optimum requirement of Zn-gluconate for this species. For this purpose, seven isonitrogenous (29.18%) and isolipidic (10.71%) purified diets were formulated with graded Zn-gluconate levels (0, 10, 20, 30, 40, 50, and 60 mg/kg). A total of 525 juveniles (4.30 ± 0.13 g) were distributed in 21 tanks. All treatments were assessed in triplicates. At the end of the trial (90 days), a progressive increase in final weight (FW) was observed in mori fed with 0-40 mg/kg of Zn-gluconate, remained constant at 50 mg/kg of Zn-gluconate, and significantly decreased at 60 mg/kg of Zn-gluconate. Similarly, weight gain and specific growth rate followed a similar pattern, while weight gain% increased till 40 mg/kg of Zn-gluconate. However, further increase (40-60 mg/kg) had a non-significant effect on weight gain%. Diet supplemented with 40 mg/kg of Zn-gluconate resulted in optimum values for feed intake and feed conversion ratio. Supplementation of Zn-gluconate did not affect dry matter, crude fat, and crude ash at all graded levels. However, whole body crude protein was significant in response to Zn-gluconate supplementation. Furthermore, Zn-gluconate absorption enhanced from 0 to 40 mg/kg of Zn-gluconate and remained constant afterward. Whole body mineral activity also followed a similar pattern. Overall, Zn-gluconate supplementation enhanced (P < 0.05) mineral activity in all parts of the tested parts of mori, including bones, scales, skin, eyes, heart, liver, and kidney. Moreover, the highest (P < 0.05) mineral activity in the skin, heart, liver, and kidney was observed in 60 mg/kg of Zn-gluconate. Supplementation of Zn-gluconate significantly increased the activity of alkaline phosphatase while it reduced thiobarbituric acid reactive substance contents of mori. The optimal dietary requirement of Zn-gluconate was recorded as 43.86 mg/kg through broken-line regression for maximum weight gain% of mori juveniles. Conclusively, 40 mg/kg of Zn-gluconate supplementation significantly enhanced the health of C. mrigala. However, a further increase in Zn-gluconate supplementation from 40 to 60 mg/kg did not significantly improve the above-mentioned parameters.

9.
PLoS One ; 18(12): e0296220, 2023.
Article in English | MEDLINE | ID: mdl-38134190

ABSTRACT

This study assessed the effect of substituting soybean meal (SBM) with cotton seed meal (CSM) on different biological traits in thaila (Catla catla). Fish (n = 225) with an average initial body weight of 41.53±0.68 g were shifted into hapas (3 (L) x 2 (W) x 1 (D) m) in triplicate (15 fish/replicate). Hapas were divided into five dietary groups: 0CSM, 25CSM, 50CSM, 75CSM, and 100CSM diet treatments were administered diets for a period of 90 days. SBM was replaced by CSM at the levels of 0, 25, 50, 75, and 100%. The results showed that fish survival and growth performance were not affected by the inclusion of CSM in the fish diet up to 50% as a replacement of SBM, but higher replacement levels showed a negative effect. Similarly, body composition and most of the muscle amino acid profiles were not affected significantly (P>0.05) by replacing SBM with CSM. Digestive enzyme activities were significantly (P<0.05) decreased by increasing the level of CSM in the fish diet. Alanine transaminase (ALT) and aspartate transaminase (AST) levels increased significantly (P<0.05) with increasing dietary CSM levels, while alkaline phosphatase (ALP) levels remained the same. Malondialdehyde (MDA) and catalase (CAT) activity decreased significantly (P<0.05), but superoxide dismutase (SOD) activity showed no change. For the intestine, the villus height to villus width ratio and thickness of Tunica muscularis were also better in 25CSM, and their values decreased as the CSM inclusion level increased in the fish diet. In conclusion, SBM could be replaced partially (up to 50%) with CSM without compromising growth performance, whole body proximate composition or immunity of C. catla.


Subject(s)
Carps , Animals , Flour , Diet , Antioxidants , Body Composition , Aquaculture/methods , Animal Feed/analysis
10.
PLoS One ; 18(9): e0288163, 2023.
Article in English | MEDLINE | ID: mdl-37669268

ABSTRACT

The present study was conducted on Head Punjnad (HP) and Head Taunsa (HT) to evaluate the contamination of Pb, Cr, As, Hg, and Cd in water, soil, sediment, fish as a whole and fish organs. Fish, water, soil and sediment samples were collected from different sites of HT and HP on a monthly basis for 8 months. Heavy metals in water, soil, and sediment were determined by a polarized Zeeman atomic absorption spectrophotometer and in fish and fish organs by an atomic absorption spectrophotometer. Contamination of Cd, Hg, and As was significantly (P<0.05) higher in water of HP as compared to HT, while Cr showed a non-significant (P>0.05) difference at HP and HT. Pb was significantly (P<0.05) higher in water of HT as compared to HP. In the case of soil, Cd, Hg, and Pb were higher at HT as compared to HP, while As and Cr were significantly (P<0.05) higher at HP as compared to HT. In sediment, contamination of Cd, Hg, and As were significantly (P<0.05) higher at HP as compared to HT, while the Cr difference was non-significant (P>0.05) but Pb showed a significantly (P<0.05) higher value at HT than HP. Cd accumulation in different fish species was recorded as R. rita ˃O. niloticus ˃C. marulius ˃S. sarwari ˃C. idella ˃C. catla ˃N. notopterus ˃E. vacha ˃L. rohita ˃C. carpio, respectively. Hg as O. niloticus ˃S. sarwari ˃R. rita ˃C. marulius ˃C. catla ˃N. notopterus ˃E. vacha ˃L. rohita ˃C. carpio ˃C. idella, respectively. As as O. niloticus ˃R. rita ˃S. sarwari ˃C. marulius ˃C. catla ˃C. carpio ˃N. notopterus ˃C. idella ˃E. vacha ˃L. rohita, respectively. Cr accumulation recorded as L. rohita ˃C. idella ˃O. niloticus ˃C. marulius ˃E. vacha ˃R. rita ˃C. catla ˃C. carpio ˃S. sarwari ˃N. notopterus, respectively. Pb accumulation in different fish species was recorded as C. idella ˃C. carpio ˃N. notopterus ˃L. rohita ˃O. niloticus ˃C. marulius ˃R. rita ˃S. sarwari ˃E. vacha ˃C. catla, respectively. Cd accumulation in different organs was recorded as kidney ˃liver ˃gills ˃muscle ˃skin ˃scale. Hg accumulation in different organs was recorded as kidney ˃gills ˃liver ˃skin ˃muscle ˃scale. As accumulation in different organs was recorded as kidney ˃liver ˃gills ˃muscle ˃skin ˃scale. Cr accumulation in different organs was recorded as gills ˃ liver ˃skin ˃muscle ˃kidney ˃scale. Pb accumulation in different organs was recorded as gills˃ kidney˃ skin˃ liver˃ muscle˃ scale.


Subject(s)
Catfishes , Mercury , Metals, Heavy , Animals , Cadmium , Lead , Pakistan , Water , Soil
11.
PLoS One ; 18(4): e0284285, 2023.
Article in English | MEDLINE | ID: mdl-37104295

ABSTRACT

The aim of the current study was to evaluate the toxic effect of silver nanoparticles (Ag-NPs) on biochemical biomarkers, immune responses, and the curative potential effects of vitamin C and E on grass carp. Fish (n = 420) with an average initial body weight of 8.045 ± 0.13 g were shifted to glass aquaria (36 x 18 x 18 inches, filled with 160-L tap water) in triplicates. Aquaria were randomly designated as A, B, C, D with alone Ag-NPs (Control (0), 0.25, 0.50, 0.75 mg/L) and E, F, G with Ag-NPs + Vit. C + Vit. E (0.25+0.25+0.25, 0.50+0.50+0.50, 0.75+0.75+0.75 mg/L). NPs particles were administrated viz, oral and intravenous routes for 7 days. The results indicated that both routes had non-significant effect, but levels of Ag-NPs had significant effect. Treatments C, D and G showed significant decrease in levels of RBC, HGB and HCT except for WBC and NEUT levels, which significantly increased. ALT, ALP, AST, urea, and creatinine showed significant increase in activity in the C, D, and G groups. CAT, SOD decreased significantly in all Ag-NPs alone groups, while significantly increased with vitamin E and C. LYZ, TP, ALB, GLB showed significant low activity in the B, C, and D groups while significantly high activity in the E, F, and G groups. Cortisol, glucose and triglycerides showed significant increase in the B, C, and D groups, while E, F, and G groups showed significant low levels of triglycerides, COR, and GLU. Cholesterol level was same across all treatment groups. In conclusion, vitamin E and C as powerful antioxidants protect the fish against Ag-NPs except high dose level of 0.75mg/L, while 0.25mg/L of Ag-NPs was presumably safe for C. idella.


Subject(s)
Carps , Metal Nanoparticles , Animals , Antioxidants , Metal Nanoparticles/toxicity , Silver/toxicity , Vitamin E/pharmacology
12.
PLoS One ; 18(2): e0281274, 2023.
Article in English | MEDLINE | ID: mdl-36787289

ABSTRACT

The bullseye snakehead (Channa marulius) is considered as an affordable and robust freshwater fish for farming in Asia. However, there is limited knowledge on the species' full nutritional requirements to date with extensive gaps in our knowledge and particularly in precision aspects of protein requirements. Therefore, a three-month feeding trial was conducted under semi-intensive farming conditions to determine the protein requirement of bullseye snakehead using test diets containing 40 (P40), 45 (P45), 50 (P50), and 55% (P55) crude protein levels. The growth performance results revealed that the 55% dietary protein group (P55) had the highest final mean weight (14.09 g fish-1), and net weight gain (12.82 g fish-1). When compared to other dietary treatments, the final weight (R2 = 0.921), and weight gain (R2 = 0.913), displayed a linear increasing trend as dietary protein is raised. The lowest FCR was observed in 50% (1.94±0.01) and 55% (1.97±0.01) CP diet groups compared to dietary treatments. Further analysis has shown that the body protein content also significantly increased as dietary protein was raised to 55%. Although, a reverse trend was found in body lipid levels with increasing protein in the diet. The incremental dietary protein also elevated proximal intestinal protease activity but decreased amylase and lipase activity. The overall essential and non-essential amino acids levels of snakehead fillet muscle reflected an increase in dietary protein. Overall, this study has shown that the fish fed a diet with 55% crude protein attained the highest growth performance and nutrient profile of the whole fish when compared to other dietary treatments tested. It would appear we did not obtain the maximum potential for growth under the present experimental conditions due to the upper protein constraint of 55% in the diet. Further quantitative studies are suggested.


Subject(s)
Diet , Fishes , Animals , Dietary Proteins , Body Composition , Weight Gain , Animal Feed/analysis , Dietary Supplements
13.
PLoS One ; 17(9): e0274734, 2022.
Article in English | MEDLINE | ID: mdl-36112655

ABSTRACT

The objective of this study was to optimize the organic selenium (Se) requirements of intensively reared silver carp (Hypophthalmichthys molitrix). A total of n = 300 juveniles silver carp 11.40±0.52 cm long, and average weighing 25.28±0.18 grams were randomly assigned to 15 aquaria (20 fish/100L aquaria) and subjected to five different dietary Se levels in a completely randomized design. The diets were pelleted supplemented with exogenous Se methionine @ 0.0, 0.3, 0.6, 0.9 and 1.2 mg/kg of the diet. The fourteen days of aquaria acclimatization was given to fish and then an 84-day feeding trial was conducted. The group supplemented with 0.9 mg/kg Se had greater feed intake, gain in length, body weight %, and specific growth rate with a better feed conversion ratio as compared to those fed on the rest of the dietary levels or control (P<0.05). The deposition of Se was greater in the liver, and kidneys of the fishes fed on diets containing 0.9 and 1.2 mg Se levels than in the rest of the treatments (P<0.05). However, dietary Se levels had no effects on the bioaccumulation of Se in muscle tissues (P>0.05). The proximate analysis showed that dry matter, crude protein, and fat contents of meat were not changed (P>0.05) by dietary treatments. Similarly, values of TBARS, RBCs, Hb, and blood glucose contents were similar (P>0.05) across the treatments. However, the concentration of WBCs, HCT, and MCHC was greater in those groups fed on 0.9 and 1.2 Se levels than in those fed on 0.6, 0.3, and 0.0 Se levels respectively (P<0.05). The activities of ALT, AST, and ALP were lowered in the 0.9 mg Se supplemented fishes compared with the rest of the treatments (P<0.05). The SOD, catalases, and GPx levels for muscle, liver, and whole body were greater (P<0.05) in the Se-supplemented groups than in the control. These outcomes indicated that up to 0.9 mg/kg inclusion of methionine-based Se in the diet of juvenile silver carp improved the growth performance, feed conversion ratio, organs Se enrichment, and antioxidant status without any compromise on meat quality.


Subject(s)
Carps , Selenium , Animals , Antioxidants/metabolism , Blood Glucose , Carps/metabolism , Meat , Methionine/pharmacology , Selenium/metabolism , Selenium/pharmacology , Superoxide Dismutase , Thiobarbituric Acid Reactive Substances
14.
Data Brief ; 27: 104565, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31656834

ABSTRACT

Fishes are most diverse group of vertebrates with more than 33000 species. These are identified based on several visual characters including their shape, color and head. It is difficult for the common people to directly identify the fish species found in the market. Classifying fish species from images based on visual characteristics using computer vision and machine learning techniques is an interesting problem for the researchers. However, the classifier's performance depends upon quality of image dataset on which it has been trained. An imagery dataset is needed to examine the classification and recognition algorithms. This article exhibits Fish-Pak: an image dataset of 6 different fish species, captured by a single camera from different pools located nearby the Head Qadirabad, Chenab River in Punjab, Pakistan. The dataset Fish-Pak are quite useful to compare various factors of classifiers such as learning rate, momentum and their impact on the overall performance. Convolutional Neural Network (CNN) is one of the most widely used architectures for image classification based on visual features. Six data classes i.e. Ctenopharyngodon idella (Grass carp), Cyprinus carpio (Common carp), Cirrhinus mrigala (Mori), Labeo rohita (Rohu), Hypophthalmichthys molitrix (Silver carp), and Catla (Thala), with a different number of images, have been included in the dataset. Fish species are captured by one camera to ensure the fair environment to all data. Fish-Pak is hosted by the Zoology Lab under the mutual affiliation of the Department of Computer Science and the Department of Zoology, University of Gujrat, Gujrat, Pakistan.

SELECTION OF CITATIONS
SEARCH DETAIL
...