Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597042

ABSTRACT

In this manuscript, we demonstrate a visible-light driven dimerization of para-quinone methides using eosin Y catalyst via a reductive homocoupling process. This mild and operationally simple methodology was found to be compatible with a variety of differently substituted para-quinone methides and a broad range of tetra-arylethane derivatives were obtained in moderate to good yields (47%-87%).

2.
Chem Commun (Camb) ; 58(95): 13238-13241, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36354976

ABSTRACT

A Pd-catalyzed direct method has been developed to access 1,3-disubstituted indolizines. This reaction proceeds through a regiospecific annulation of terminal alkynes with 2-pyridinyl-substituted p-quinone methides and, in most of the cases, the desired 1,3-disubstituted indolizines were obtained in moderate to good isolated yields. The control experiments suggested that the reaction does proceed through a substrate-controlled regiospecific formal [3 + 2]-annulation pathway.


Subject(s)
Alkynes , Indolizines , Catalysis , Molecular Structure , Quinones
3.
J Org Chem ; 87(5): 3363-3377, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35107013

ABSTRACT

In this article, we describe a convenient method to access 9-aryl fluorene derivatives through a TfOH-catalyzed intramolecular 1,6-conjugate arylation of 2-(aryl)-phenyl-substituted p-quinone methides (QMs) under continuous flow using the microreaction technique. This method was found to be very effective for most of the p-QMs, and the corresponding 9-aryl fluorene derivatives were obtained in moderate to excellent yields. Moreover, this protocol was further elaborated to the first total syntheses of selaginpulvilin I and isoselagintamarlin A.


Subject(s)
Indolequinones , Catalysis
4.
Chem Rec ; 21(12): 4150-4173, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34369640

ABSTRACT

In the last few years, there has been an explosive growth in the area of para-quinone methide (p-QM) chemistry. This boom is actually due to the unique reactivity pattern of p-QMs, and also their remarkable synthetic applications. In fact, p-QMs serve as synthons for unsymmetrical diaryl- and triarylmethanes, and also for the construction of diverse range of carbocycles and heterocycles. In the last few years, a wide range of structurally complex heterocyclic frameworks could be accessed through the synthetic transformations of structurally modified stable p-QMs. Therefore, the main focus of this review article is to cover the recent advancements in the transition-metal, Lewis acid and base-catalyzed/mediated synthetic transformations of the stable p-quinone methides (p-QMs) to oxygen- and nitrogen-containing heterocycles.


Subject(s)
Indolequinones , Oxygen , Nitrogen , Nucleotides
5.
Drug Res (Stuttg) ; 69(5): 271-276, 2019 May.
Article in English | MEDLINE | ID: mdl-30193391

ABSTRACT

A number of 5-oxo-1-phenyl-4-(substituted methyl) pyrrolidine-3-carboxylic acid derivatives bearing pyrrolidine ring and methylamino residues in their structure were synthesized as potential antibacterial drugs. The chemical structures of all the compounds were established by their UV-Vis absorption spectroscopy, IR, 1H, 13C NMR and mass spectroscopy. The in vitro antibacterial screening of all novel compounds was done against gram-positive Staphylococcus aureus, Bacillus subtilis and gram-negative Pseudomonas aeruginosa. The results revealed that compounds 5d, e, f and g showed moderate to good activity against the tested microbes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carboxylic Acids/chemistry , Pyrrolidines/chemistry , Anti-Bacterial Agents/chemistry , Bacillus subtilis/drug effects , Mass Spectrometry , Microbial Sensitivity Tests , Molecular Structure , Proton Magnetic Resonance Spectroscopy , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Structure-Activity Relationship
6.
Heliyon ; 4(12): e01009, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30582037

ABSTRACT

The synthesized compound (2Z,4Z)-2,4-bis(4-chlorobenzylidene)-5-oxo-1-phenylpyrrolidine-3-carboxylic acid (BCOPCA) was characterised by Ultraviolet, FT-Infra Red, 1H, 13C Nuclear Magnetic Resonance and mass spectroscopy. The compound was further subjected to quantum chemical calculations at the level of density functional theory (DFT) using 6-31G (d,p) basis sets method with B3LYP and CAM-B3LYP hybrid functionals. The intramolecular interactions, polarizability, hyperpolarizability and nonlinear optical properties of the title compound were also incorporated in the study. The total first static hyperpolarizability (ß0 = 19.477 × 10-30 and 16.924 × 10-30 esu) value was also computed and indicated the title molecule as an interesting forthcoming NLO material. The other thermodynamic properties (entropy, heat capacity and zero vibrational energy) were also discussed. The study also includes NBO computations, complete vibrational assignments, Mulliken charges, UV-Visible spectral analysis and HOMO-LUMO energies. The regions of low and high electron density were obtained from MESP and ESP maps. The calculated parameters for BCOPCA using aforementioned functions are harmonious with the experimental findings. The in-vitro antimicrobial activity and molecular docking studies of BCOPCA were also done and showed a good correlation.

7.
Drug Res (Stuttg) ; 68(4): 222-231, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29156457

ABSTRACT

A simple and highly efficient procedure for the synthesis of novel thiazol-2-amines, via Mannich reaction with secondary amines, is described. The newly synthesized derivatives 8(A-E): and 9(A-E): were characterized by 1H NMR, 13C NMR, IR, Mass spectroscopy and elemental analysis. All the derivatives were evaluated for their in-vitro anti-microbial activity against a panel of pathogenic strains of bacteria and fungi. The SAR showed that the secondary amines had a significant impact on the in-vitro antimicrobial activity of this class of agents. The most potent analogue N-((1H-benzo[d]imidazol-1-yl)methyl)-N-(2(trifluoromethyl)phenyl)-4,5-dihydrothiazol-2-amine (8C): showed excellent inhibition with MIC (zoi) 6.25 (22.5), 25 (21.5) and 25 (18) µg/mL against E. coli, S. typhi and P. aeruginosa respectively as compared to the standard drug. Molecular docking results suggest that compound exhibited inhibitory activity by binding of the title compound within the active sites of the inhibiting Enoyl ACP reductase, Lipid A, Pyridoxal kinase and type I DHQase enzymes. The compound exhibited promising anti-microbial activity which can be further explored as potential lead for the development of cheaper, safe, effective and potent drugs against resistant microbial parasites.


Subject(s)
Amines/chemistry , Amines/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Bacteria/drug effects , Fungi/drug effects , Microbial Sensitivity Tests/methods , Molecular Docking Simulation/methods , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...