Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Protein J ; 43(1): 115-128, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38127183

ABSTRACT

The addition of exogenous endocrine disrupting compounds (EDCs) like estrone, in the food chain through the aquatic system, disrupts steroid biosynthesis and metabolism by altering either the genomic or non-genomic pathway that eventually results in various diseases. Thus, bioremediation of these compounds is urgently required to prevent their addition and persistence in the environment. Enzymatic degradation has proven to be a knight in shining armour as it is safe and generates no toxic products. The multicopper oxidases (E.C. 1.10.3.2 benzenediol: oxygen oxidoreductase), laccase with the potential to degrade both phenolic and non-phenolic substrates has recently gained attention. In this study, the laccase was purified, characterized, and used to study estrone degradation. The culture filtrate (crude laccase) was concentrated and precipitated using cold-acetone and dialyzed against tris buffer (50 mM) giving a four-fold partially purified form, with 45.56% yield and 204.14 U/mg as specific activity and a single peak at 250-300 nm. The partially purified laccase was approximately 80 kDa as estimated by SDS-PAGE preferred ABTS as substrate. Both crude and partially purified laccase showed maximum activity at pH 3.0, 40 °C, and 4 mM ABTS. Kinetic constants (Km, Vmax) of crude and partially purified laccase were found to be 0.83 mM; 494.31 mM/min, and 0.58 mM; 480.54 mM/min respectively. Iron sulphate and sodium azide inhibited laccase maximally. Crude and partially purified laccase degradation efficiency was 87.55 and 91.35% respectively. Spirulina CPCC-695 laccase with efficient estrone degradation ability renders them promising candidates for EDCs bioremediation.


Subject(s)
Benzothiazoles , Laccase , Spirulina , Sulfonic Acids , Laccase/chemistry , Laccase/genetics , Laccase/metabolism , Estrone , Spirulina/metabolism , Temperature , Hydrogen-Ion Concentration
2.
Bioprocess Biosyst Eng ; 46(10): 1377-1398, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37294320

ABSTRACT

Zinc oxide nanoparticles (ZnONPs) have become the widely used metal oxide nanoparticles and drawn the interest of global researchers due to their biocompatibility, low toxicity, sustainability and cost-effective properties. Due to their unique optical and chemical properties, it emerges as a potential candidate in the fields of optical, electrical, food packaging and biomedical applications. Biological methods using green or natural routes are more environmentally friendly, simple and less use of hazardous techniques than chemical and/or physical methods in the long run. In addition, ZnONPs are less harmful and biodegradable while having the ability to greatly boost pharmacophore bioactivity. They play an important role in cell apoptosis because they enhance the generation of reactive oxygen species (ROS) and release zinc ions (Zn2+), causing cell death. Furthermore, these ZnONPs work well in conjunction with components that aid in wound healing and biosensing to track minute amounts of biomarkers connected to a variety of illnesses. Overall, the present review discusses the synthesis and most recent developments of ZnONPs from green sources including leaves, stems, bark, roots, fruits, flowers, bacteria, fungi, algae and protein, as well as put lights on their biomedical applications such as antimicrobial, antioxidant, antidiabetic, anticancer, anti-inflammatory, antiviral, wound healing, and drug delivery, and modes of action associated. Finally, the future perspectives of biosynthesized ZnONPs in research and biomedical applications are discussed.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Nanoparticles , Zinc Oxide , Zinc Oxide/chemistry , Nanoparticles/chemistry , Metal Nanoparticles/chemistry , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Apoptosis
3.
Sci Rep ; 13(1): 6246, 2023 04 17.
Article in English | MEDLINE | ID: mdl-37069201

ABSTRACT

Driven by the need to biosynthesized alternate biomedical agents to prevent and treat infection, copper oxide nanoparticles (CuONPs) have surfaced as a promising avenue. Cyanobacteria-derived synthesis of CuONPs is of substantive interest as it offers an eco-friendly, cost-effective, and biocompatible route. In the present study biosynthesized CuONPs were characterized and investigated regarding their toxicity. Morphological analysis using TEM, SEM and AFM showed the spherical particle size of 20.7 nm with 96% copper that confirmed the purity of CuONPs. Biogenic CuONPs with IC50 value of 64.6 µg ml-1 showed 90% scavenging of free radicals in superoxide radical scavenging assay. CuONPs showed enhanced anti-inflammatory activity by 86% of protein denaturation with IC50 value of 89.9 µg ml-1. Biogenic CuONPs exhibited significant toxicity against bacterial strains with lowest MIC value of 62.5 µg ml-1 for B. cereus and fungal strain with a MIC value of 125 µg ml-1 for C. albicans. In addition CuONPs demonstrated a high degree of synergistic interaction when combined with standard drugs. CuONPs exhibited significant cytotoxicity against non-small cell lung cancer with an IC50 value of 100.8 µg ml-1 for A549 and 88.3 µg ml-1 for the H1299 cell line with apoptotic activities. Furthermore, biogenic CuONPs was evaluated for their photocatalytic degradation potential against methylene blue dye and were able to removed 94% dye in 90 min. Free radical scavenging analysis suggested that CuONPs assisted dye degradation was mainly induced by hydroxide radicals. Biogenic CuONPs appears as an eco-friendly and cost effective photocatalyst for the treatment of wastewater contaminated with synthetic dyes that poses threat to aquatic biota and human health. The present study highlighted the blend of biomedical and photocatalytic potential of Phormidium derived CuONPs as an attractive approach for future applications in nanomedicine and bioremediation.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Metal Nanoparticles , Nanoparticles , Humans , Copper/pharmacology , Phormidium , Nanoparticles/toxicity , Superoxides , Candida albicans , Metal Nanoparticles/toxicity
4.
Environ Sci Pollut Res Int ; 30(10): 25069-25079, 2023 Feb.
Article in English | MEDLINE | ID: mdl-34286430

ABSTRACT

Paddy field farming remains the dominant form of growing rice in modern times as the rice is the staple food for over half the world's population and is closely associated with food security and political stability of many countries. Record increase in rice production have been observed since the start of the Green Revolution. India is one of the largest paddy producer and exporter in the world. However, constant use of chemical herbicide like paraquat had shown adverse impact on the rice yield. Non-target organisms of the habitat including cyanobacterial paddy biofertilizer face the herbicide toxicity and are unable to perform efficiently their role as biofertilizer. Therefore, in the present study, an attempt has been made to enhance the paraquat resistance in rice biofertilizer (Microchaete sp. NCCU-342) by exogenous addition of salicylic acid. Paraquat showed toxicity in Microchaete sp. NCCU-342 in a dose-dependent manner. Concentration of paraquat >1.0 µM exhibited lethal effect since the beginning. Through successive narrow range experiment, LD50 value of paraquat was obtained as 0.6 µM. Biomass exposed to paraquat (LD50 value) and salicylic acid (0.3 mM) showed mitigation in free radical production (2.20 % MDA and 1.69 % H2O2) and enhancement in the activity of the antioxidant enzymes activity, i.e. SOD, CAT, APX (137.76 %, 87.45 %, 118 %, respectively) and osmolytes (3.8 % proline and 21.51% sucrose). Thus, for sustainable agricultural practice, especially for paddy field cyanobacterial biofertilizer, application of salicylic acid or organism with higher salicylic acid production ability may be an alternative to overcome the paraquat toxicity.


Subject(s)
Cyanobacteria , Herbicides , Paraquat , Salicylic Acid , Hydrogen Peroxide , Antioxidants
5.
Biodegradation ; 34(1): 43-51, 2023 02.
Article in English | MEDLINE | ID: mdl-36396827

ABSTRACT

Endocrine disrupting compounds (EDCs) are emerging contaminants that persist and contaminate the environment. They mimic hormones, block hormones, or modulate their synthesis, metabolism, transport, and action, affecting living organisms and their progeny. Steroid hormones from exogenous sources like water bodies are important EDCs. Their biodegradation is an urgent global need. The present study is a preliminary work to maximize the estrone degradation potential of Spirulina CPCC-695 and study the effect of optimized conditions on its laccase activity. It was observed that the exponential phase culture at pH 10.0, 30 ℃, and 200 rpm of agitation speed resulted in the maximum growth, estrone degradation efficiency (93.12%), and highest laccase activity (74%) of Spirulina CPCC-695.


Subject(s)
Endocrine Disruptors , Spirulina , Water Pollutants, Chemical , Estrone/analysis , Laccase/chemistry , Laccase/metabolism , Spirulina/metabolism , Biodegradation, Environmental , Endocrine Disruptors/metabolism , Water Pollutants, Chemical/analysis
6.
Bioorg Chem ; 129: 106218, 2022 12.
Article in English | MEDLINE | ID: mdl-36341741

ABSTRACT

The use of aqueous cyanobacterial extracts for selenium nanoparticle (SeNP) synthesis is considered green, cost-effective, and eco-friendly technology that is more advanced than physical and chemical methods. In the current study, an aqueous extract of Arthrospira indica SOSA-4 was used as a reducing and stabilizing agent for the green synthesis of SeNPs. The UV-Visible absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-Ray diffraction, Raman spectroscopy, Atomic force microscopy (AFM), Scanning electron microscopy-Energy Dispersive X-Ray spectroscopy(SEM-EDX), and Transmission electron microscopy (TEM) were performed to characterize the biosynthesized SeNPs. Gas chromatography-Mass spectrometry (GC-MS) was also performed to know the composition of the cyanobacterial extract. SEM, TEM, and AFM showed the average size of SeNPs to be 8.5 nm, 9 nm, and 8.7 nm respectively. FT-IR analysis demonstrated the presence of functional groups on the SeNPs that acted as stabilizing agents. XRD pattern and Raman spectroscopy showed the amorphous nature of SeNPs. Synthesized SeNPs showed significant antioxidant activity in DPPH, FRAP, SOR, and ABTS assay. SeNPs showed good anti-microbial activity against Staphylococcus aureus, Escherichia coli, Candida albicans, Candida glabrata, and Candida tropicalis and good anti-cancer activity in MTT assay, Trypan assay, and Flow cytometry analysis against MCF-7, SiHa, and SW480 cell lines. Non-toxicity of SeNPs against normal cell line (HEK-293) was an additional property that affirmed its potential as a bio-compatible nanomaterial.


Subject(s)
Cyanobacteria , Selenium , Humans , Spectroscopy, Fourier Transform Infrared , HEK293 Cells , Selenium/chemistry , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
7.
J Trace Elem Med Biol ; 74: 127069, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36152464

ABSTRACT

BACKGROUND: Biofilms are microbial colonies that remain enclosed in an organic polymeric matrix substance on biotic and abiotic surfaces, allowing them to colonize medical equipments and involved in most device associated life intimidating infections. Due to their antimicrobial resistance there is an urgent need to discover novel biofilm preventive and therapeutic agents. METHODS: ZnO NPs were synthesized using cyanobacteria Gleocapsa gelatinosa cell extract through green and cost-effective approach. Physiochemical characterization was done to determine their morphologies and size distribution. Antibiofilm and eradication activity of ZnO NPs was determined. Cell viability and internalization ability of ZnO NPs into biofilm was analyzed by flow cytometry. Confocal microscopy was done to visualize the disrupted biofilm morphology treated with ZnO NPs. RESULTS: It was observed that ZnONPs were spherical in shape with 31-35 nm size and were moderately dispersed. ZnO NPs exhibited high antibiofilm activity against B. cereus and E. coli with minimum biofilm inhibitory concentration (MBIC) of ZnO NPs at 46.8 µg ml-1 and 93.7 µg ml-1. Flow cytometry analysis confirmed the reduced bacterial cell viability due to increased permeability, altered bacterial growth and enhanced production of intracellular ROS. Disruption of membrane integrity exhibited with reduced exopolysaccharides secretion and leakage of nucleic acids through UV-Vis spectroscopy. Results of confocal microscopy highlighted strong interaction of ZnO NPs with intracellular components leading to biofim destruction. CONCLUSIONS: This study emphasizes the potential mechanisms underlying the selective bactericidal properties of ZnO NPs and highlighted the strong interaction of ZnO NPs with intracellular components leading to biofim destruction. Therefore, ZnO NPs could be considered as a promising antibiofilm agent and thus could expand the possibility to use as therapeutic agent.


Subject(s)
Metal Nanoparticles , Nanoparticles , Nucleic Acids , Zinc Oxide , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria , Biofilms , Cell Extracts/pharmacology , Drug Resistance, Multiple , Escherichia coli , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Nanoparticles/chemistry , Plant Extracts/chemistry , Reactive Oxygen Species/pharmacology , Zinc Oxide/chemistry , Zinc Oxide/pharmacology
8.
Genes Dis ; 9(5): 1258-1268, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35873025

ABSTRACT

Acute Lung Injury (ALI) and its severe form Acute Respiratory Distress Syndrome (ARDS) are the major cause of ICU death worldwide. ALI/ARDS is characterized by severe hypoxemia and inflammation that leads to poor lung compliance. Despite many advances in understanding and management, ALI/ARDS is still causing significant morbidity and mortality. Long non-coding RNA (lncRNA) is a fast-growing topic in lung inflammation and injury. lncRNA is a class of non-coding RNA having a length of more than 200 nucleotides. It has been a center of research for understanding the pathophysiology of various diseases in the past few years. Multiple studies have shown that lncRNAs are abundant in acute lung injury/injuries in mouse models and cell lines. By targeting these long non-coding RNAs, many investigators have demonstrated the alleviation of ALI in various mouse models. Therefore, lncRNAs show great promise as a therapeutic target in ALI. This review provides the current state of knowledge about the relationship between lncRNAs in various biological processes in acute lung injury and its use as a potential therapeutic target.

9.
Sci Rep ; 12(1): 11175, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35778433

ABSTRACT

Across the world, paddy fields naturally harbour cyanobacteria that function as biofertilizers and secrete various compounds like Indole-3-acetic acid (IAA) that help organisms in regulating their growth. Also, paddy field farming utilizes large amounts of pesticides (e.g. atrazine); but their continued application in the agricultural field causes toxicity in non-target cyanobacterial species that hinder their performance as a biofertilizer. Hence, the current study is an attempt to ameliorate the atrazine stress in cyanobacterium Cylindrospermum stagnale by addition of IAA (1 mM each) under different atrazine levels (0, 60, 80, 100, 120, 140 µg/l). Atrazine toxicity affected C. stagnale in a dose-dependent manner further experiments revealed that both the exogenous and endogenous IAA mitigated the detrimental effects of atrazine. It reduced MDA content and simultaneously increased chlorophyll content, total protein content, and multiple antioxidant enzyme activities [superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX)] at 140 µg/l. A molecular docking study revealed that the pesticide binds to the D1 protein of the photoelectric chain in photosynthesis. Hence, the application of IAA or cyanobacterial biofertilizer that secretes a sufficient amount of IAA may assist sustainable agriculture in counteracting the atrazine toxicity.


Subject(s)
Atrazine , Cyanobacteria , Antioxidants/metabolism , Atrazine/toxicity , Cyanobacteria/metabolism , Indoleacetic Acids , Molecular Docking Simulation
10.
Biotechnol J ; 17(10): e2100684, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35666486

ABSTRACT

Phaeodactylum tricornutum is a marine diatom, rich in omega-3 polyunsaturated fatty acids especially eicosapentaenoic acid (EPA) and brown pigment, that is, fucoxanthin. These high-value renewables (HVRs) have a high commercial and nutritional relevance. In this study, our focus was to enhance the productivities of such renewables by employing media engineering strategy via., photoautotrophic (P1, P2, P3) and mixotrophic (M1, M2, M3, M4) modes of cultivation with varying substrate combinations of carbon (glycerol: 0.1 m) and nitrogen (urea: 441 mm and/or sodium nitrate: 882 mm). Our results demonstrate that mixotrophic [M4] condition supplemented with glycerol (0.1 m) and urea (441 mm) feed enhanced productivities (mg L-1  day-1 ) as follows: biomass (770.0), total proteins (36.0), total lipids (22.0), total carbohydrates (23.0) with fatty acid methyl esters (9.6), EPA (2.7), and fucoxanthin (1.1), respectively. The overall yield of EPA represents 28% of total fatty acids in the mixotrophic [M4] condition. In conclusion, our improved strategy of feeding urea to a glycerol-supplemented medium defines a new efficient biomass valorization paradigm with cost-effective substrates for the production of HVRs in oleaginous diatoms P. tricornutum.


Subject(s)
Diatoms , Microalgae , Carbon/metabolism , Cost-Benefit Analysis , Diatoms/metabolism , Eicosapentaenoic Acid/metabolism , Esters/metabolism , Glycerol/metabolism , Microalgae/metabolism , Nitrogen/metabolism , Urea/metabolism , Xanthophylls
11.
Protein J ; 41(3): 414-423, 2022 06.
Article in English | MEDLINE | ID: mdl-35713742

ABSTRACT

Phenylalanine ammonia lyase (PAL) catalyzes the deamination of phenylalanine to cinnamic acid and ammonia. It plays a crucial role in the formation of secondary metabolites through the phenylpropanoid pathway. Recently there has been growing interest in exploring the biochemical properties of PAL for its clinical and commercial applications. PAL as a key component has been used in metabolic engineering and synthetic biology. Due to its high substrate specificity and catalytic efficacy, PAL has opened a new area of interest in the biomedical field. PAL has been frequently used in the enzyme replacement therapy of phenylketonuria, cancer treatment and microbial production of l-phe the precursor of noncalorific sweetener aspartame (Methyl L-α-aspartyl-l-phenylalaninate), antimicrobial and health supplements. PAL occurs in few plants, fungi, bacteria, and cyanobacteria. The present investigation is a preliminary study in which an attempt has been made for the isolation, partial purification, and biochemical characterization of PAL (crude and partially purified) from Spirulina CPCC-695. Partially purified PAL exhibited higher enzymatic activity and protein content than the crude enzyme. Molecular weight of the crude and partially purified PAL was ~ 66 kDa. The optimum temperature and pH for PAL activity was observed as 30 â„ƒ and 8.0 respectively. l-Phe was the most preferred substrate (100 mM) whereas gallic acid showed maximum inhibition of PAL activity. Enzyme kinetics suggested good catalytic efficacy of the PAL enzyme and affinity towards substrate. Both the enzyme (crude and partially purified) showed less than 5% haemolysis suggesting the biocompatible nature of PAL.


Subject(s)
Phenylketonurias , Spirulina , Humans , Phenylalanine/metabolism , Phenylalanine/therapeutic use , Phenylalanine Ammonia-Lyase/chemistry , Phenylalanine Ammonia-Lyase/metabolism , Phenylketonurias/drug therapy , Substrate Specificity
12.
RSC Adv ; 12(4): 2497-2510, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35425239

ABSTRACT

Driven by the need to biosynthesize alternate biomedical agents to prevent and treat infection, silver nanoparticles have surfaced as a promising avenue. Cyanobacteria-derived nanomaterial synthesis is of substantive interest as it offers an eco-friendly, cost-effective, sustainable, and biocompatible route for further development. In the present study optimal conditions for synthesis of silver nanoparticles (AgNPs) were 1 : 9 v/v [cell extract: AgNO3 (1 mM)], pH 7.4, and 30 °C reaction temperatures. Synthesis of nanoparticles was monitored by UV-vis spectrophotometry and the maximum absorbance was observed at a wavelength of 420 nm. SEM with EDX analysis confirmed 96.85% silver by weight which revealed the purity of AgNPs. TEM & XRD analysis exhibited a particle size of ∼12 nm with crystalline nature. FTIR analysis confirmed the presence of possible biomolecules involved in the synthesis and stabilization of AgNPs. Decapping of AgNPs followed by SDS-PAGE, LCMS and MALDI TOF analysis elucidates the proteinaceous nature of the capping and stabilizing agent. Cyanobacterial-derived capped AgNPs showed more cytotoxicicity towards a non-small cell lung cancer (A549) cell line, free radical scavenger and an antimicrobial than de-capped AgNPs. In addition they showed significant synergistic characteristics with antibiotics and fungicides. The test revealed that the capped AgNPs were biocompatible with good anti-inflammatory properties. The blend of antimicrobial and biocompatible properties, coupled with their intrinsic "green" and facile synthesis, made these biogenic nanoparticles particularly attractive for future applications in nanomedicine.

13.
Semin Cancer Biol ; 86(Pt 2): 720-736, 2022 11.
Article in English | MEDLINE | ID: mdl-35257861

ABSTRACT

Chemokines are small secreted proteins that regulate the immune system by signaling through chemokine receptors to induce immune cell migration, motility, and infiltration into the tissue. Altered chemokine/receptor expression is associated with numerous inflammatory diseases, and more recently in non-immune cell diseases like cancer. Emerging new studies demonstrate that chemokines can directly modulate the tumor microenvironment (TME) to assist tumorigenesis by regulating proinflammatory signaling, immune cell infiltration,and metastasis. However, the diversity and complexity in the regulation of chemokine expression and how chemokine receptor signaling influences TME needs comprehensive understanding. One mechanistic pathway that has shown promising early results in targeting tumor progression is the non-coding RNAs (ncRNAs). These are widely expressed and designated as prime gene regulatory factors in tumors and the immune system. Notably, ncRNAs have been implicated in regulating chromatin stability, translation of cytoplasmic mRNAs, and the functional regulation of membrane-less nuclear bodies, which are significant pathways implicated in tumorigenesis. Tissue-specific patterns of expression of ncRNAs have suggested their role as potential cancer biomarkers, providing a suitable rationale for targeting them clinically. In this review, we discuss the recent findings which demonstrate the role of differential expression of chemokines and ncRNA in modulating TME during tumor progression. We also discuss the communication between tumor and immune effector cells via chemokine/ncRNAs and identify their potential as novel therapeutic targets.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/genetics , Neoplasms/pathology , RNA, Untranslated/genetics , Chemokines/genetics , Chemokines/metabolism , Cell Transformation, Neoplastic , Carcinogenesis
14.
Environ Sci Pollut Res Int ; 29(26): 39052-39066, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35098455

ABSTRACT

The present study was aimed at exploring 37 strains of cyanobacteria for the biofabrication of TiO2 NP and evaluation of their antioxidant, antifungal, antibacterial and hemolytic activity. Screening of cyanobacterial strains was done via SEM, followed by optimisation and characterisation of the best strain. Synechocystis NCCU-370 appeared as the best strain for the synthesis of TiO2 NP in terms of size (73.39 nm) and time (24 h) after screening. Following optimisation, nanoparticles were synthesised in 12 h having an average grain size of 16 nm. The aqueous extract preparation required heating of 5 mg/ml of powdered biomass to 60 °C for 10 min. Optimum conditions for the synthesis of TiO2 NP were found to be pH 7, 30 °C and 12-h cell extract exposure to 0.1 mM of salt. Antioxidant activity was evaluated via DPPH, ABTS and FRAP assay. Antifungal potential was explored against Candida albicans (MIC = 125 µg/ml), Candida glabrata (MIC = 500 µg/ml) and Candida tropicalis (MIC = 250 µg/ml), whereas antibacterial potential was gauged for Bacillus cereus (MIC = 31.25 µg/ml), Escherichia coli (MIC = 31.25 µg/ml) and Klebsiella pneumoniae (MIC = 500 µg/ml) strains. Biogenic TiO2 NP demonstrated partial synergistic effect and excellent biocompatibility.


Subject(s)
Cyanobacteria , Metal Nanoparticles , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents , Antioxidants/chemistry , Antioxidants/pharmacology , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Titanium
15.
Chemosphere ; 293: 133562, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35026202

ABSTRACT

Increasing population has resulted in increased food demand. Pesticides like paraquat (PQ) have been used indiscriminately to increase the growth and yield of crops. However, this has adversely affected a wide spectrum of non-target organisms like cyanobacteria that are used as a bio-fertilizer in the rice field. In the present study, biogenic- Gloeocaspa gelatinosa NCCU -430 mediated selenium nanoparticles (SeNPs) were synthesized and characterized using different techniques including UV-Visible spectroscopy, XRD, FTIR, TEM and SEM-EDX for their use as PQ toxicity mitigator in cyanobacterial biofertilizer (Anabaena variabilis NCCU-442). Therefore, a comparative study was performed among control, PQ, SeNPs and SeNPs+PQ to check the efficacy of SeNPs in mitigation of PQ induced toxicity. Supplementation of SeNPs in PQ treated culture enhanced antioxidant enzymes activity i.e., SOD (7.55%), CAT (57.94%), APX (17.45%) and GR (14.72%) as compared to only PQ treated culture. The outcomes of the present study suggested that SeNPs can ameliorate the PQ induced stress that may be used in sustainable rice cultivation needed for filing the gap between requirement and supply.


Subject(s)
Cyanobacteria , Nanoparticles , Selenium , Antioxidants/chemistry , Antioxidants/pharmacology , Nanoparticles/chemistry , Paraquat/toxicity , Selenium/chemistry
16.
Bioorg Chem ; 113: 104999, 2021 08.
Article in English | MEDLINE | ID: mdl-34062406

ABSTRACT

Due to unique properties of the nanoparticles (NPs) with biocompatibility, their application as drug in drug delievery and diagnostics, the recent scientific branch nanotechnology has emerged as hope in modern medicine. Zinc oxide nanoparticles (ZnO NPs) have gained tremendous interest due to their potential use as chemotherapeutic and antimicrobial agents. They are included in the category of "generally recognized as safe (GRAS) metal oxide". There is an urgent need for developing additional sources of ZnO NPs. Therefore, in the present study 30 cyanobacterial extracts were screened for ZnO NPs synthesis.. The color change of the reaction mixture from blue to pale white indicated the synthesis of ZnO NPs. It was further confirmed by UV-Visible spectroscopy that showed the absorption peak at 372 nm. The SEM analysis during screening revealed that Oscillatoria sp. synthesized smallest ZnO NPs (~40 nm) that were further optimized for their higher yield by altering reaction conditions (pH, temperature, reaction time, concentration of extract and metal precursor). Best conditions for ZnO NPs synthesis are (0.02 M zinc nitrate, 10 ml of extract volume, pH 8, at 80 °C for 3 h). The NPs were purified through calcination at 350°C and characterized by UV-Vis, FTIR, XRD, SEM-EDAX, TEM, Zeta potential and DLS analysis. The comparative analysis of purified biogenic ZnO NPs with commercial chemically synthesized ZnO NPs (CS), exhibited their superior nature as antioxidant and anti-bacterial agent against both gram-positive and gram-negative bacteria. Synergistic effects of biogenic ZnO NPs and streptomycin additionally favored for their future use as a potential biomedical agent.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Cyanobacteria/chemistry , Metal Nanoparticles/chemistry , Zinc Oxide/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cyanobacteria/metabolism , Drug Synergism , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Hydrogen Peroxide/chemistry , Metal Nanoparticles/toxicity , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Particle Size
17.
Sci Rep ; 11(1): 13507, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34188065

ABSTRACT

Selenium nanoparticles (SeNPs) are gaining importance in the field of medicines due to their high surface area and unique properties than their other forms of selenium. In this study, biogenic selenium nanoparticles (B-SeNPs) were synthesized using cyanobacteria and their bioactivities (antioxidant, antimicrobial, anticancer and biocompatibility) were determined for comparison with commercially available chemically synthesized selenium nanoparticles (C-SeNPs). Color change of reaction mixture from sky blue to orange-red indicated the synthesis of biogenic SeNPs (B-SeNPs). UV-Vis spectra of the reaction mixture exhibited peak at 266 nm. During optimization, 30 °C of temperature, 24 h of time and 1:2 concentration ratio of sodium selenite and cell extract represented the best condition for SeNPs synthesis. Various functional groups and biochemical compounds present in the aqueous extract of Anabaena variabilis NCCU-441, which may have possibly influenced the reduction process of SeNPs were identified by FT-IR spectrum and GC-MS. The synthesized cyanobacterial SeNPs were orange red in color, spherical in shape, 10.8 nm in size and amorphous in nature. The B-SeNPs showed better anti-oxidant (DPPH, FRAP, SOR and ABTS assays), anti-microbial (antibacterial and antifungal) and anti-cancer activitities along with its biocompatibility in comparison to C-SeNPs suggesting higher probability of their biomedical application.


Subject(s)
Anabaena variabilis/chemistry , Antioxidants , Metal Nanoparticles/chemistry , Selenium/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry
18.
Int J Biol Macromol ; 183: 549-563, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-33932421

ABSTRACT

Biological polyesters of hydroxyacids are known as polyhydroxyalkanoates (PHA). They have proved to be an alternative, environmentally friendly and attractive candidate for the replacement of petroleum-based plastics in many applications. Many bacteria synthesize these compounds as an intracellular carbon and energy compound usually under unbalanced growth conditions. Biodegradability and biocompatibility of different PHA has been studied in cell culture systems or in an animal host during the last few decades. Such investigations have proposed that PHA can be used as biomaterials for applications in conventional medical devices such as sutures, patches, meshes, implants, and tissue engineering scaffolds as well. Moreover, findings related to encapsulation capability and degradation kinetics of some PHA polymers has paved their way for development of controlled drug delivery systems. The present review discusses about bio-plastics, their characteristics, examines the key findings and recent advances highlighting the usage of bio-plastics in different medical devices. The patents concerning to PHA application in biomedical field have been also enlisted that will provide a brief overview of the status of research in bio-plastic. This would help medical researchers and practitioners to replace the synthetic plastics aids that are currently being used. Simultaneously, it could also prove to be a strong step in reducing the plastic pollution that surged abruptly due to the COVID-19 medical waste.


Subject(s)
Biocompatible Materials/chemistry , COVID-19 , Polyhydroxyalkanoates/chemistry , SARS-CoV-2 , Animals , Biodegradation, Environmental , Humans , Medical Waste , Medical Waste Disposal
19.
Mater Sci Eng C Mater Biol Appl ; 122: 111888, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33641896

ABSTRACT

Nanoparticles (NPs) have gained importance in technological advances owing to their user friendly enhanced and efficient physical, chemical, and biological characteristics compared to their bulk counterparts. Biological synthesis of NPs by using a microorganism, enzymes, or plant extracts offers a greener and eco-friendly approach besides many advantages over physical or chemical approaches. This study reports the biosynthesis of silver nanoparticles (AgNPs) using Nostoc muscorum NCCU 442 aqueous extract as the reducing and capping agent for AgNPs synthesis. The synthesized nanoparticles were characterized by UV-VIS spectrum, SEM, EDS, TEM, AFM, DLS and XRD. Results showed distinguishing polycrystalline nature of synthesized AgNPs with surface plasmon significant band in the size range of 6-45nm with average 30 size nm. FT-IR study revealed the role of secondary metabolites present in aqueous extract for the synthesis of AgNPs. Biological activities of purified AgNPs as antioxidant and antibacterial potential showed the highest antibacterial activity against Staphylococcus aureus MTCC 902.


Subject(s)
Metal Nanoparticles , Silver , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Plant Extracts/pharmacology , Spectroscopy, Fourier Transform Infrared
20.
Biomed J ; 44(1): 54-62, 2021 03.
Article in English | MEDLINE | ID: mdl-33640332

ABSTRACT

The present outburst of coronavirus-associated (SARS-CoV-2) acute respiratory disease coronavirus disease 19 (COVID-19) in December 2019 in Wuhan, China is the third recognised spill over due to the zoonotic transmission. SARS-CoVs are about 29.7 kb positive, single stranded (ss) RNA viruses that are considered as zoonotic pathogens, bat being their natural reservoirs and also shows transmission within humans. The rapidly increasing COVID-19 cases and need of best and efficient drug/vaccine/strategy to counteract the virus entry and its pathogenesis has made it a Herculean challenge for scientists. Synthetic drugs associated complications has attracted scientific attention for natural product-based drugs. Chemo-diversity of algae and cyanobacteria offers a novel approach and can be recognized as a relevant source for developing a future natural "antiviral drug". The aim of this review is to highlight important features of SARS-CoV-2/COVID-19 and the antiviral compounds recognized in algae and cyanobacteria, with their mechanisms of actions. Algae possess both immunity improving capacity and suppresses many viruses. Thus, they can be recommended as a preventive and curative remedy against SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , COVID-19 Drug Treatment , Cyanobacteria/chemistry , SARS-CoV-2/drug effects , Carrageenan/pharmacology , Microalgae/chemistry , Phaeophyceae/chemistry , Rhodophyta/chemistry , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...