Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(17): 19334-19344, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38708257

ABSTRACT

Diabetes-induced kidney damage represents a substantial health hazard, emphasizing the imperative to explore potential therapeutic interventions. This study investigates the nephroprotective activity of flavonoid-rich extracts from Hibiscus sabdariffa leaves in streptozotocin-induced diabetic rats. The flavonoid-rich extracts of H. sabdariffa leaves was obtained using a standard procedure. The animals were induced with streptozotocin and thereafter treated with both low (LDHSFL) and high doses (HDHSFL) of flavonoid-rich extracts from H. sabdariffa leaves and metformin (MET), and other groups are diabetic control (DC) and normal control (NC). The study assesses diverse renal parameters, encompassing kidney redox stress biomarkers, serum electrolyte levels, kidney inflammatory biomarkers, serum concentrations of creatinine, urea, and uric acid, kidney phosphatase activities, renal histopathology, and relative gene expressions of kidney injury molecule-1 (KIM-1) and transforming growth factor beta-1 (TGF-1ß), comparing these measurements with normal and diabetic control groups (NC and DC). The findings indicate that the use of extracts from H. sabdariffa leaves markedly (p < 0.05) enhanced renal well-being by mitigating nephropathy, as demonstrated through the adjustment of various biochemical and gene expression biomarkers, indicating a pronounced antioxidative and anti-inflammatory effect, improved kidney morphology, and mitigation of renal dysfunction. These findings suggest that H. sabdariffa leaf flavonoid extracts exhibit nephroprotective properties, presenting a potential natural therapeutic approach for the treatment of diabetic nephropathy.

2.
Nat Prod Res ; : 1-9, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38648537

ABSTRACT

O. gratissimum is one of the most common medicinal plants in every community in Nigeria. This plant has been presumed to be useful in the management of diseases including breast cancer, which is one the commonest cancers affecting women globally. Hence, this study aimed to computationally investigate the phytochemicals present in O. gratissimum by elucidate their binding dynamics against five selected molecular targets of breast cancer and predict their pharmacokinetics properties. Molecular docking, MMGBSA calculation and ADMET prediction were used. The results showed that isovitexin has the highest binding affinity of -9.11 kcal/mol and -9.80 kcal/mol for Human Epidermal Growth Factor Receptor 2 (HER2) and Epidermal Growth Factor Receptor (EGFR) respectively. Rosmarinic acid has the highest binding affinity of -12.15 kcal/mol for Phosphatidylinositol 3-kinase (PI3K), Nepetoidin A has the highest binding affinity of -9.14 kcal/mol for oestrogen receptor (ER), and Vitexin has the highest binding affinity of -12.90 kcal/mol for Progesterone receptor (PR). MMGBSA provided total binding energy that confirmed the stability of the complexes under physiological conditions. The ADMET profiles showed that O. gratissimum top phytochemicals identified would be safe for oral administration with no hepatoxicity. Overall, this study identified isovitexin, vitexin, rosmarinic acid, nepetoidin A and luteolin among others, as compounds that exhibit strong anti-cancer properties against breast cancer cells.

3.
Front Bioinform ; 3: 1123307, 2023.
Article in English | MEDLINE | ID: mdl-37351013

ABSTRACT

Human adenoviruses (HAdVs) are non-enveloped, small double stranded DNA (dsDNA) viruses that cause asymptomatic infections, clinical syndromes and significant susceptibility to infections in immunocompromised people. The aim of the present study was to identify critical host proteins and HAdV hypothetical proteins that could be developed as potential host-viral targets for antiHAdV therapy. Here, the function of selected hypothetical proteins of HAdV based on phylogenetic relationship with the therapeutic targets of antiretroviral drugs of human immunodeficiency virus (HIV) was predicted computationally, and characterized the molecular dynamics and binding affinity of DNA polymerase of HAdV. Thirty-eight hypothetical proteins (HPs) of human adenovirus (HAdV) were used in this study. The results showed that HAdV DNA polymerase (P03261) is related to Human TERT (O14746) and HLA-B (P01889) genes. The protein-protein interaction of human five molecular targets (PNP, TERT, CCR5, HLA-B, and NR1I2) of ARVDs are well-coordinated/networked with CD4, AHR, FKBP4, NR3C1, HSP90AA1, and STUB1 proteins in the anti-HIV infection mechanism. The results showed that the free energy score of abacavir and zidovudine binding to HAdV DNA polymerase are -5.8 and -5.4 kcal mol-1 respectively. Also, the control drug, cidofovir and ganciclovir have less binding affinity for DNA polymerase of HAdV when compare to that of abacavir and zidovudine. Similarity was observed in the binding of abacavir and zidovudine to HAdV DNA polymerase (ASP742, ALA743, LEU772, ARG773 and VAL776). In conclusion, combination of abacavir and zidovudine was predicted to be potential therapy for controlling HAdV infection targeting HAdV DNA polymerase.

4.
Int J Mol Sci ; 24(6)2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36982902

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is regarded as a fatal neurodegenerative disease that is featured by progressive damage of the upper and lower motor neurons. To date, over 45 genes have been found to be connected with ALS pathology. The aim of this work was to computationally identify unique sets of protein hydrolysate peptides that could serve as therapeutic agents against ALS. Computational methods which include target prediction, protein-protein interaction, and peptide-protein molecular docking were used. The results showed that the network of critical ALS-associated genes consists of ATG16L2, SCFD1, VAC15, VEGFA, KEAP1, KIF5A, FIG4, TUBA4A, SIGMAR1, SETX, ANXA11, HNRNPL, NEK1, C9orf72, VCP, RPSA, ATP5B, and SOD1 together with predicted kinases such as AKT1, CDK4, DNAPK, MAPK14, and ERK2 in addition to transcription factors such as MYC, RELA, ZMIZ1, EGR1, TRIM28, and FOXA2. The identified molecular targets of the peptides that support multi-metabolic components in ALS pathogenesis include cyclooxygenase-2, angiotensin I-converting enzyme, dipeptidyl peptidase IV, X-linked inhibitor of apoptosis protein 3, and endothelin receptor ET-A. Overall, the results showed that AGL, APL, AVK, IIW, PVI, and VAY peptides are promising candidates for further study. Future work would be needed to validate the therapeutic properties of these hydrolysate peptides by in vitro and in vivo approaches.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Molecular Docking Simulation , NF-E2-Related Factor 2/metabolism , Peptides/pharmacology , Peptides/metabolism , Superoxide Dismutase-1/genetics , DNA Helicases/metabolism , RNA Helicases/metabolism , Multifunctional Enzymes/metabolism , Kinesins/metabolism , Flavoproteins/metabolism
5.
Int J Mol Sci ; 24(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36768852

ABSTRACT

Several reviews of inhibitors of topoisomerase II have been published, covering research before 2018. Therefore, this review is focused primarily on more recent publications with relevant points from the earlier literature. Topoisomerase II is an established target for anticancer drugs, which are further subdivided into poisons and catalytic inhibitors. While most of the topoisomerase II-based drugs in clinical use are mostly topoisomerase II poisons, their mechanism of action has posed severe concern due to DNA damaging potential, including the development of multi-drug resistance. As a result, we are beginning to see a gradual paradigm shift towards non-DNA damaging agents, such as the lesser studied topoisomerase II catalytic inhibitors. In addition, this review describes some novel selective catalytic topoisomerase II inhibitors. The ultimate goal is to bring researchers up to speed by curating and delineating new scaffolds as the leads for the optimization and development of new potent, safe, and selective agents for the treatment of cancer.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , DNA Topoisomerases, Type II , Neoplasms/drug therapy , DNA/therapeutic use , Topoisomerase I Inhibitors/therapeutic use , Enzyme Inhibitors/pharmacology
6.
J Biomol Struct Dyn ; 41(10): 4398-4404, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35470784

ABSTRACT

Human 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR; EC 1.1.1.34) catalyzes the conversion of (3S)-hydroxy-3-methylglutaryl-CoA (HMG-CoA) to mevalonic acid, which has been defined as the rate-limiting step in the synthesis of cholesterol and other isoprenoids, thus playing a critical role in cellular cholesterol homeostasis. In this study, the effect of changing pH on the structural dynamics and binding affinity of HMGCR were investigated by molecular dynamics simulation using OpenMM, and molecular docking using Autodock Vina. The results pinpoint pH 8.0 for optimum structural stability/activity of HMGCR, and the insightful relationships between pH, structural dynamics radius of gyration (Rg) or root mean square deviation (RMSD), and binding affinity of HMGCR. This method will be useful to predict the pH for the uncharacterized human proteins, toward biomedical and biotechnological applicationsCommunicated by Ramaswamy H. Sarma.


Subject(s)
Cholesterol , Oxidoreductases , Humans , Molecular Docking Simulation , Hydrogen-Ion Concentration
7.
Rev Bras Farmacogn ; 31(2): 142-161, 2021.
Article in English | MEDLINE | ID: mdl-33727754

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a virulent viral disease that has now become a public health emergency of global significance and still without an approved treatment regimen or cure. In the absence of curative drugs and with vaccines development still in progress, alternative approaches to stem the tide of the pandemic are being considered. The potential of a phytotherapeutic approach in the management of the dreaded disease has gained attention, especially in developing countries, with several claims of the development of anti-COVID-19 herbal formulations. This is a plausible approach especially with the increasing acceptance of herbal medicine in both alternative and orthodox medical practices worldwide. Also, the established efficacy of herbal remedies in the treatment of numerous viral diseases including those caused by coronaviruses, as well as diseases with symptoms associated with COVID-19, presents a valid case for serious consideration of herbal medicine in the treatment of COVID-19. However, there are legitimate concerns and daunting challenges with the use of herbs and herbal products. These include issues of quality control, unethical production practice, inadequate information on the composition, use and mechanisms, weak regulatory policies, herb-drug interactions and adverse reactions, and the tendency for abuse. This review discusses the feasibility of intervention with herbal medicine in the COVID-19 pandemic and the need to take proactive measures to protect public health by improving the quality and safety of herbal medicine deployed to combat the disease. Graphical abstract. Supplementary Information: The online version contains supplementary material available at 10.1007/s43450-021-00132-x.

8.
J Biomol Struct Dyn ; 39(16): 6195-6217, 2021 Oct.
Article in English | MEDLINE | ID: mdl-32686993

ABSTRACT

The novel coronavirus of 2019 (nCoV-19) has become a pandemic, affecting over 205 nations with over 7,410,000 confirmed cases which has resulted to over 418,000 deaths worldwide. This study aimed to identify potential therapeutic compounds and phytochemicals of medicinal plants that have potential to modulate the expression network of genes that are involve in SARS-CoV-2 pathology in human host and to understand the dynamics key proteins involved in the virus-host interactions. The method used include gene network analysis, molecular docking, and sequence and structure dynamics simulations. The results identified DNA-dependent protein kinase (DNA-PK) and Protein kinase CK2 as key players in SARS-CoV-2 lifecycle. Among the predicted drugs compounds, clemizole, monorden, spironolactone and tanespimycin showed high binding energies; among the studied repurposing compounds, remdesivir, simeprevir and valinomycin showed high binding energies; among the predicted acidic compounds, acetylursolic acid and hardwickiic acid gave high binding energies; while among the studied anthraquinones and glycosides compounds, ellagitannin and friedelanone showed high binding energies against 3-Chymotrypsin-like protease (3CLpro), Papain-like protease (PLpro), helicase (nsp13), RNA-dependent RNA polymerase (nsp12), 2'-O-ribose methyltransferase (nsp16) of SARS-CoV-2 and DNA-PK and CK2alpha in human. The order of affinity for CoV proteins is 5Y3E > 6NUS > 6JYT > 2XYR > 3VB6. Finally, medicinal plants with phytochemicals such as caffeine, ellagic acid, quercetin and their derivatives could possibly remediate COVID-19.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Plants, Medicinal , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals , SARS-CoV-2 , Sequence Analysis
9.
Bioinform Biol Insights ; 14: 1177932220943183, 2020.
Article in English | MEDLINE | ID: mdl-32782427

ABSTRACT

In this study, the interaction of selected pharmaceutical excipients on the function of P-glycoprotein (P-gp) and activity of 6 cytochrome P450 (CYP) isoforms were computationally investigated. At binding free energy cut-off value of -5.0 kcal/mol, the result showed possible modulatory or inhibitory effect by cethyl alcohol on CPY3A4 and P-gp; cetyltrimethyl-ammonium bromide (CTAB) on CYP1A2 and P-gp; dibutyl sebacate on CYP2C9, CYP2E1, and P-gp; sodium caprylate on CYP1A2 and CYP3A4; while most of the tested excipients have good interaction with the cytochromes and P-gp. The predicted pharmacokinetics provided possible inhibitors of the CYPs and P-gp and suggested that aspartame and acetyl tributyl citrate may not permeate blood-brain barrier and not act as P-gp substrates. Target prediction for CTAB showed 100% and 35% probability of target to dynamin-1 (UniProt ID: Q05193) and histamine H3 receptor (UniProt ID: Q9Y5N1), respectively, whereas tricaprylin showed 40% probability of target to 5 Protein kinase C (UniProt IDs: P17252, Q02156, Q04759, P24723, and P05129). This study shows that synergistic effect of some excipients present in a drug formulation and multiple drugs administration is possible through modulation of CYPs activities and P-gp function, and this is crucial for consideration to mitigate toxicity in pediatric and adult populations.

10.
In Silico Pharmacol ; 5: 8, 2017.
Article in English | MEDLINE | ID: mdl-28955650

ABSTRACT

Morinda citrifolia (Noni) fruit has a long history of dietary use in tropical regions of the world. Pharmacological properties that have been attributed to the fruit include anti-inflammatory, anti-cancer, and antioxidant properties. Xeronine, a small alkaloid which has been patented (US4543212) is one of the bioactive compounds of Noni fruit, which is believed to be capable of modifying the molecular structure of specific inactive proteins thereby regulating proper folding to active enzymes. Despite reports of the potential of Xeronine as therapeutic agent, its presence is controversial and its structure has not been explored. In this study, standard chemoinformatics tools and servers such as ChemSketch, ChemMine, Swisstargetprediction, SwissADME and Swisssimilarity have been employed to predict its possible structure. In addition, synthetic xeronine structures based on the known bioactive components of Noni fruit were designed. Results showed that the hypothetical structure of xeronine provided by the patent inventor is a mystery based on its <5% probable protein targets and no similarity match to the US Food and Drug Administration (FDA) approved drugs and experimental compounds by in silico evaluation. By constrast, final designed xeronine structure possess all the features that were described in the patent document, and has >40% probable protein targets related to neurodegenerative diseases such as Alzheimer's disease (AD), which possibly justifies the key function stated in the patent.

SELECTION OF CITATIONS
SEARCH DETAIL
...