Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm Investig ; 6(4): 231-237, 2016.
Article in English | MEDLINE | ID: mdl-28123993

ABSTRACT

OBJECTIVE: The aim of this study was to compare the effects of radiofrequency radiation (RF) in synergism with gold (Au) and silver (Ag) nanoparticles (NPs) on the survival fraction of human normal kidney (HNK) and human embryonic kidney (HEK) cells. MATERIALS AND METHODS: HNK and HEK cells were divided into three groups as control, 1 and 2 h/day-irradiated groups for 8 days. To compare the effects of RF in the presence of Au-NPs and Ag-NPs, the cells were incubated with NPs during the irradiation. In other words, six other groups were designed for the cell incubated with Au-NPs and Ag-NPs including control, 1 and 2 h/day-irradiated groups for 8 days. Generalized estimating equation model was applied to consider the natural correlation of repeated measurements over the time. RESULTS: The mean survival fractions of HNK + Ag-NPs and HEK + Au-NPs were 0.098 less, 0.184 and 0.055 more than HEK cells, respectively. Along with the time, the mean fraction in HEK + Ag-NPs and HEK + Au-NPs groups in comparison with the HEK increased by the rate of 0.005 and decreased by the rates of 0.01 and 0.005, respectively. The mean survival fractions in HEK + Ag-NPs and HEK + Au-NPs were significantly less than that of HEK cells (P < 0.05). CONCLUSIONS: RF radiation can affect both HNK and HEK cells when irradiated for 2 h/day for 8 days. The results showed that the Ag-NPs do not increase the synergistic effects of RF compared to the Au-NPs. RF radiation at the presence of Au-NPs can be used as an efficient treatment for melanoma.

4.
J Med Signals Sens ; 2(4): 235-40, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23724375

ABSTRACT

Ferritin is a macromolecule and is responsible for the long term iron storage function in human serum and plasma. Recent studies have highlighted the role of cell phone exposure on central nervous system, immune function and reproduction. The aim of this study was to investigate whether the human serum ferritin level could be interfered by the exposure to the 900 MHz GSM cell phones. Fifty human serum wells from 25 normal healthy donors were labeled with ruthenium to form a sandwich complex based on an immunoassay technique. All of them were placed into two batches, and the well heads in the first batch were exposed to 900 MHz exposure emitted from a speech mode cell phone (Nokia, Model 1202, India) for 30 min. Unexposed batch was served as the control sample under identical conditions and was compared with the exposed one in quantitative determination of ferritin using the Wilcoxon test with criterion level of P = 0.050. Human serum wells in the exposed batch showed a significant decrease in serum ferritin relative to the control batch (P = 0.029). The average ± SD ferritin level in the exposed batch was 84.94 ± 1.04 µg/L while it was 87.25 ± 0.83 µg/L for the unexposed batch. Radiofrequency electromagnetic waves emitted from cell phones may lead to oxidative stress and rapid diffusion of the human ferritin level in an in vitro enzymun assay. Also, the enzyme activity can be affected. Effects of exposure from mobile phones must be considered further.

SELECTION OF CITATIONS
SEARCH DETAIL
...