Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 7(8)2021 02.
Article in English | MEDLINE | ID: mdl-33608269

ABSTRACT

Migration of gonadotropin-releasing hormone (GnRH) neurons from their birthplace in the nasal placode to their hypothalamic destination is critical for vertebrate reproduction and species persistence. While their migration mode as individual GnRH neurons has been extensively studied, the role of GnRH-GnRH cell communication during migration remains largely unexplored. Here, we show in awake zebrafish larvae that migrating GnRH neurons pause at the nasal-forebrain junction and form clusters that act as interhemisphere neuronal ensembles. Within the ensembles, GnRH neurons create an isolated, spontaneously active circuit that is internally wired through monosynaptic glutamatergic synapses into which newborn GnRH neurons integrate before entering the brain. This initial phase of integration drives a phenotypic switch, which is essential for GnRH neurons to properly migrate toward their hypothalamic destination. Together, these experiments reveal a critical step for reproduction, which depends on synaptic communication between migrating GnRH neurons.

2.
Oncogene ; 27(8): 1079-86, 2008 Feb 14.
Article in English | MEDLINE | ID: mdl-17704803

ABSTRACT

In human cancer, PTEN (Phosphatase and TENsin homolog on chromosome 10, also referred to as MMAC1 and TEP1) is a frequently mutated tumor suppressor gene. We have used the zebrafish as a model to investigate the role of Pten in embryonic development and tumorigenesis. The zebrafish genome encodes two pten genes, ptena and ptenb. Here, we report that both Pten gene products from zebrafish are functional. Target-selected inactivation of ptena and ptenb revealed that Ptena and Ptenb have redundant functions in embryonic development, in that ptena-/- and ptenb-/- mutants did not show embryonic phenotypes. Homozygous single mutants survived as adults and they were viable and fertile. Double homozygous ptena-/-ptenb-/- mutants died at 5 days post fertilization with pleiotropic defects. These defects were rescued by treatment with the phosphatidylinositol-3-kinase inhibitor, LY294002. Double homozygous embryos showed enhanced cellular proliferation. In addition, cell survival was dramatically enhanced in embryos that lack functional Pten upon gamma-irradiation. Surprisingly, adult ptenb-/- zebrafish developed ocular tumors later in life, despite the expression of ptena in adult eyes. We conclude that whereas Ptena and Ptenb have redundant functions in embryonic development, they apparently do not have completely overlapping functions later in life. These pten mutant zebrafish represent a unique model to screen for genetic and/or chemical suppressors of Pten loss-of-function.


Subject(s)
Neoplasms/genetics , PTEN Phosphohydrolase/genetics , Phosphoprotein Phosphatases/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Adult , Animals , Animals, Genetically Modified , Eye Neoplasms/genetics , Female , Genes, Tumor Suppressor/physiology , Humans , Isoenzymes/genetics , Neoplasms/embryology , PTEN Phosphohydrolase/physiology , Phosphoprotein Phosphatases/physiology , Pregnancy , Zebrafish/embryology , Zebrafish Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...