Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(2): e0191052, 2018.
Article in English | MEDLINE | ID: mdl-29485998

ABSTRACT

Insufficient membrane penetration of drugs, in particular biotherapeutics and/or low target specificity remain a major drawback in their efficacy. We propose here the rational characterization and optimization of peptides to be developed as vectors that target cells expressing specific receptors involved in endocytosis or transcytosis. Among receptors involved in receptor-mediated transport is the LDL receptor. Screening complex phage-displayed peptide libraries on the human LDLR (hLDLR) stably expressed in cell lines led to the characterization of a family of cyclic and linear peptides that specifically bind the hLDLR. The VH411 lead cyclic peptide allowed endocytosis of payloads such as the S-Tag peptide or antibodies into cells expressing the hLDLR. Size reduction and chemical optimization of this lead peptide-vector led to improved receptor affinity. The optimized peptide-vectors were successfully conjugated to cargos of different nature and size including small organic molecules, siRNAs, peptides or a protein moiety such as an Fc fragment. We show that in all cases, the peptide-vectors retain their binding affinity to the hLDLR and potential for endocytosis. Following i.v. administration in wild type or ldlr-/- mice, an Fc fragment chemically conjugated or fused in C-terminal to peptide-vectors showed significant biodistribution in LDLR-enriched organs. We have thus developed highly versatile peptide-vectors endowed with good affinity for the LDLR as a target receptor. These peptide-vectors have the potential to be further developed for efficient transport of therapeutic or imaging agents into cells -including pathological cells-or organs that express the LDLR.


Subject(s)
Peptides/metabolism , Receptors, LDL/metabolism , Amino Acid Sequence , Animals , Drug Delivery Systems , Endocytosis , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Peptide Library , Peptides/chemistry , Peptides/genetics , Protein Binding , Protein Engineering , Rats , Receptors, LDL/deficiency , Receptors, LDL/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
2.
Mol Pharm ; 13(12): 4094-4105, 2016 12 05.
Article in English | MEDLINE | ID: mdl-27656777

ABSTRACT

Active targeting and delivery to pathophysiological organs of interest is of paramount importance to increase specific accumulation of therapeutic drugs or imaging agents while avoiding systemic side effects. We recently developed a family of new peptide ligands of the human and rodent LDL receptor (LDLR), an attractive cell-surface receptor with high uptake activity and local enrichment in several normal or pathological tissues (Malcor et al., J. Med. Chem. 2012, 55 (5), 2227). Initial chemical optimization of the 15-mer, all natural amino acid compound 1/VH411 (DSGL[CMPRLRGC]cDPR) and structure-activity relationship (SAR) investigation led to the cyclic 8 amino acid analogue compound 22/VH445 ([cMPRLRGC]c) which specifically binds hLDLR with a KD of 76 nM and has an in vitro blood half-life of ∼3 h. Further introduction of non-natural amino acids led to the identification of compound 60/VH4106 ([(d)-"Pen"M"Thz"RLRGC]c), which showed the highest KD value of 9 nM. However, this latter analogue displayed the lowest in vitro blood half-life (∼1.9 h). In the present study, we designed a new set of peptide analogues, namely, VH4127 to VH4131, with further improved biological properties. Detailed analysis of the hLDLR-binding kinetics of previous and new analogues showed that the latter all displayed very high on-rates, in the 106 s-1.M-1 range, and off-rates varying from the low 10-2 s-1 to the 10-1 s-1 range. Furthermore, all these new analogues showed increased blood half-lives in vitro, reaching ∼7 and 10 h for VH4129 and VH4131, respectively. Interestingly, we demonstrate in cell-based assays using both VH445 and the most balanced optimized analogue VH4127 ([cM"Thz"RLRG"Pen"]c), showing a KD of 18 nM and a blood half-life of ∼4.3 h, that its higher on-rate correlated with a significant increase in both the extent of cell-surface binding to hLDLR and the endocytosis potential. Finally, intravenous injection of tritium-radiolabeled 3H-VH4127 in wild-type or ldlr -/- mice confirmed their active LDLR targeting in vivo. Overall, this study extends our previous work toward a diversified portfolio of LDLR-targeted peptide vectors with validated LDLR-targeting potential in vivo.


Subject(s)
Genetic Vectors/standards , Peptide Fragments/pharmacology , Receptors, LDL/antagonists & inhibitors , Animals , CHO Cells , Cricetulus , Drug Delivery Systems , Endocytosis , Mice , Mice, Inbred C57BL , Mice, Knockout , Peptide Fragments/pharmacokinetics , Receptors, LDL/physiology , Structure-Activity Relationship , Tissue Distribution
3.
J Med Chem ; 55(5): 2227-41, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-22257077

ABSTRACT

Drug delivery to the central nervous system is hindered by the presence of physiological barriers such as the blood-brain barrier. To accomplish the task of nutrient transport, the brain endothelium is endowed with various transport systems, including receptor-mediated transcytosis (RMT). This system can be used to shuttle therapeutics into the central nervous system (CNS) in a noninvasive manner. Therefore, the low-density lipoprotein receptor (LDLR) is a relevant target for delivering drugs. From an initial phage display biopanning, a series of peptide ligands for the LDLR was optimized leading to size reduction and improved receptor binding affinity with the identification of peptide 22 and its analogues. Further real-time biphoton microscopy experiments on living mice demonstrated the ability of peptide 22 to efficiently and quickly cross CNS physiological barriers. This validation of peptide 22 led us to explore its binding on the extracellular LDLR domain from an NMR-oriented structural study and docking experiments.


Subject(s)
Blood-Brain Barrier/metabolism , Oligopeptides/chemical synthesis , Peptides, Cyclic/chemical synthesis , Receptors, LDL/metabolism , Spinal Cord/metabolism , Animals , Fluorescent Dyes , Humans , Ligands , Magnetic Resonance Spectroscopy , Mice , Mice, Inbred C57BL , Models, Molecular , Oligopeptides/chemistry , Oligopeptides/pharmacokinetics , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacokinetics , Structure-Activity Relationship , Transcytosis
SELECTION OF CITATIONS
SEARCH DETAIL
...